Новосибирский государственный университет - Новосибирские биоинформатики в несколько раз повысили эффективность анализа результатов дорогостоящих геномных экспериментов |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-11-08 04:45
Биоинформатики Новосибирского государственного университета, ФИЦ «Институт цитологии и генетики СО РАН» и университета им. Мартина Лютера (Германия) создали уникальный программный комплекс, который позволит повысить эффективность анализа дорогостоящих геномных экспериментов. Результаты работы ученых опубликованы в журнале Nucleic Acids Research.
Как объяснили исследователи, данный комплекс предназначен для поиска в ДНК совместно встречающихся мотивов — участков, на которые «садятся» белки, управляющие считыванием закодированной в молекуле ДНК информации. Расположенные рядом мотивы, как правило, функционируют вместе, поэтому выявление таких пар позволит ученым предсказывать взаимодействия белков уже на этапе анализа последовательности ДНК, а также исследовать роль этих взаимодействий в физиологических процессах. Работа по созданию уникального программного комплекса заняла около двух лет. Существенный вклад внесли ученые НГУ и ИЦиГ: проект разработали и продолжают развивать сотрудники лаборатории компьютерной транскриптомики и эволюционной биоинформатики Факультета естественных наук НГУ и ИЦиГ Виктор Левицкий, Елена Землянская, и сотрудник ИЦиГ Дмитрий Ощепков. В проекте также принимают активное участие доцент кафедры информационной биологии ФЕН НГУ Татьяна Меркулова, сотрудник ЛКТиЭБ ФЕН НГУ Виктория Миронова и научный руководитель ЛКТиЭБ ФЕН НГУ Иво Гроссе (Германия). — Разработка позволяет получить гораздо более детальные сведения о регуляторной роли белка на основе эксперимента по массовому секвенированию его сайтов связывания. Если ранее для заданного белка, специфично регулирующего экспрессию генов, аналогичные подходы находили с высокой достоверностью его 3-5 партнеров-белков, то мы с помощью новой разработки находим 10-15, — отметил Виктор Левицкий. Миллионы клеток организма синтезируют белки, которые непрерывно работают: переносят кислород, защищают от вторжения чужеродных агентов, сокращают и расслабляют мышечные волокна и выполняют массу других функций. Сведения о том, где и когда должны выполняться эти действия, зашифрованы в молекуле ДНК, причем информация записана при помощи всего четырех «букв» — нуклеотидов. Нуклеотиды объединяются в «слова» — гены, и каждый ген несет в себе сведения о белке, который может с него синтезироваться. Структуру и функцию клетки определяет уникальная комбинация белков, и какой ей быть «решают» регуляторные элементы ДНК. Их структурные единицы: короткие последовательности «букв»-нуклеотидов или мотивы — опознаются белками-регуляторами (транскрипционными факторами), что приводит к запуску или, наоборот, блокированию процесса считывания генетической информации. Чтобы найти все мотивы определенного белка-регулятора в геноме, используется дорогостоящий эксперимент, который называется ChIP-seq. Важно, что белки-регуляторы никогда не работают в одиночку: активность и специфичность каждого модулируется многочисленными партнерскими белками-регуляторами, и результат работы мотива зачастую определяется именно этими взаимодействиями. Поиск же потенциальных партнеров, как правило, сопряжен с проведением дополнительных ChIP-seq экспериментов, что многократно повышает стоимость исследования. Именно эту проблему с успехом решает новый программный комплекс. — Можно провести такую аналогию. Допустим, что регуляторные белки — это небольшая популяция людей, которых всего около двух тысяч. Известно, что небольшое число конкретных людей (10-20) вместе работают в одной комнате, а вам как исследователю нужно определить состав этой рабочей группы с помощью только слуха. Пусть вы приблизительно по голосу знаете несколько сотен людей, но проблема в том, что в популяции часто встречаются люди, которые могут работать очень тихо, так что практически вы их не слышите. Поэтому только с помощью слуха, без дополнительных данных от органов зрения, большая часть исследуемой рабочей группы остается вам неизвестной. Наша разработка — это добавка к аудиоинформации видео. В аналогии аудио — расположение мотивов (слов) в ДНК без перекрывания, видео — расположение мотивов с перекрыванием. До нашей разработки для анализа результатов одного эксперимента ChIP-seq было возможно выявление пар мотивов только без их перекрывания в ДНК. Таким образом, нами добавлено новое измерение для описания функциональности изучаемого объекта, — объяснил Виктор Левицкий. Новосибирские ученые получили патент на свою программу, она готова к практическому применению. В последние несколько лет появились и продолжают пополняться открытые базы, насчитывающие уже несколько десятков тысяч ChIP-seq экспериментов для разнообразных типов тканей, клеток и для разных белков-регуляторов. Алгоритм сибирских ученых может использоваться для поиска новых партнеров уже известных белков-регуляторов, ключевых для выполнения важных физиологических функций организма, например, иммунного ответа. Работа выполнялась при поддержке Российского фонда фундаментальных исследований, проект № 18-29-13040, государственного бюджетного проекта № 0324-2019-0040. Источник: www.nsu.ru Комментарии: |
|