Как стать Data Scientist в 2019 году

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости

Новостная лента форума ailab.ru


Data Scientist — это эксперт по аналитическим данным, который обладает техническими навыками для решения сложных задач, а также любопытством, которое помогает эти задачи ставить. Эти специалисты несут основную ответственность за преобразование данных в Результативные идеи с помощью самостоятельно созданных прогностических моделей и специального анализа в соответствии с требованиями компании.

Другими словами, быть Data Scientist — чрезвычайно важная работа в нынешнем веке данных. Настолько, что статья в Harvard Business Review даже назвала ее (и это побуждает стать одним из них!).«Самой сексуальной работой 21-го века»(и это побуждает стать одним из них!). И также не повредит тому, что работа Data Scientist очень хорошо окупается при средней зарплате 1022 тыс. в год. Именно поэтому эта статья является полным руководством для того, чтобы стать Data Scientist в 2019 году. Это дорожная карта, которой вы можете следовать, если хотите узнать больше о Data Science.
Но все еще существует большая путаница между различиями в роли Data Analyst и Data Scientist, поэтому мы начнем с этой статьи и перейдем к другим темам, таким как требования к образованию и требования к навыкам, чтобы стать специалистом в этой области.

Разница между Data Analyst и Data Scientist

Очевидно, что и у Data Analyst, и у Data Scientist есть описание работы, связанное с данными. Но какие между ними есть различия? Это вопрос, который возникает у многих людей относительно различий между этими специальностями. Так что давайте проясним это сомнение здесь!

Data Analyst использует данные для решения различных проблем и получения полезных данных для компании. Это делается с помощью различных инструментов на четко определенных наборах данных, чтобы ответить на корпоративные вопросы, такие как «Почему маркетинговая кампания более эффективна в определенных регионах» или «Почему продажи продукта сократились в текущем квартале» и так далее. Для этого основными навыками, которыми обладает аналитик данных, являются Data Mining, R, SQL, статистический анализ, анализ данных и т. д. Фактически, многие Data Analysts получают дополнительные необходимые навыки и становятся Data Scientists.

С другой стороны, Data Scientist может разрабатывать новые процессы и алгоритмы для моделирования данных, создавать прогностические модели и выполнять пользовательский анализ данных в соответствии с требованиями компании. Таким образом, основное отличие заключается в том, что Data Scientist может использовать тяжелое кодирование для проектирования процессов моделирования данных, а не использовать уже существующие для получения ответов из данных, таких как Data Analyst. Для этого основными навыками, которыми обладает Data Scientist, являются Data Mining, R, SQL, Машинное обучение, Hadoop, Статистический анализ, Анализ данных, OOPS и т. д. Таким образом, причина, по которой ученым Data платят больше, чем аналитикам Data, заключается в их высокой уровни квалификации в сочетании с высоким спросом и низким предложением.

Требования к образованию, чтобы стать Data Scientist

Существует много путей достижения вашей цели, но имейте в виду, что большинство из этих путей проходят через колледж, поскольку четырехлетняя степень бакалавра является минимальным требованием.

Самый прямой путь заключается в том, что вы получаете степень бакалавра в области Data Science, поскольку она, несомненно, научит вас навыкам, необходимым для сбора, анализа и интерпретации больших объемов данных. Вы узнаете все о статистике, методах анализа, языках программирования и т. д.,, которые только помогут в вашей работе в качестве Data Scientist.

Другой обходной путь, который вы можете выбрать, — это получить любую техническую степень, которая поможет вам в роли Data Scientist. Некоторые из них — компьютерные науки, статистика, математика, экономика. После получения степени вы будете иметь навыки кодирования, обработки данных, количественного решения проблем. Которые можно применять в Data Science. Затем вы можете найти работу начального уровня или получить степень магистра и доктора наук для более специализированных знаний.

Требования к навыкам, чтобы стать Data Scientist

Для Data Scientist требуется несколько навыков, охватывающих различные области. Большинство из них упоминаются ниже:

1. Статистический анализ. Как специалист по обработке данных, ваша основная задача — собирать, анализировать и интерпретировать большие объемы данных и создавать полезные для компании идеи. Очевидно, что статистический анализ является большой частью описания работы.
Это означает, что вы должны быть знакомы хотя бы с основами статистического анализа, включая статистические тесты, распределения, линейную регрессию, теорию вероятностей, оценки максимального правдоподобия и т. д. И этого недостаточно! Немало важно иметь понятие о том, какие статистические методы являются подходящим подходом для данной проблемы данных, еще важнее понять, какие из них не являются. Кроме того, есть много аналитических инструментов, которые очень полезны в статистическом анализе для Data Scientist. Наиболее популярными из них являются SAS, Hadoop, Spark, Hive, Pig. Поэтому важно, чтобы вы хорошо их знали. 2. Навыки программирования. Навыки программирования являются необходимым инструментом в вашем арсенале. Это потому, что намного легче изучать и понимать данные, чтобы делать полезные выводы, если вы можете использовать определенные алгоритмы в соответствии со своими потребностями.

В общем, Python и R являются наиболее часто используемыми языками для этой цели. Python используется из-за его способности к статистическому анализу и его удобству к прочтению. Python также имеет различные пакеты для машинного обучения, визуализации данных, анализа данных и т. д. (Например, Scikit-learn), которые делают его подходящим для науки о данных. R также позволяет очень легко решить практически любую проблему в Data Science с помощью таких пакетов, как e1071, rpart и многих других. 3. Машинное обучение. Если вы каким-либо образом связаны с технологической отраслью, скорее всего, вы слышали о машинном обучении. Это в основном позволяет машинам изучать задачи из опыта, не программируя их специально. Это делается путем обучения машин с использованием различных моделей машинного обучения с использованием данных и различных алгоритмов. Таким образом, вы должны быть знакомы с алгоритмами контролируемого и неконтролируемого обучения в машинном обучении, такими как Линейная регрессия, Логистическая регрессия, Кластеризация K-средних, Дерево решений, Ближайший сосед и прочее. К счастью, большинство алгоритмов машинного обучения могут быть реализованы с использованием R или Библиотеки Python (упомянутые выше), Поэтому вам не нужно быть экспертом по ним. В чем вы нуждаетесь, это в умении понять, какой алгоритм требуется, основываясь на типе данных, которые у вас есть, и на задаче, которую вы пытаетесь автоматизировать.

4. Управление данными и обработка данных. Данные играют большую роль в жизни Data Scientist. Таким образом, вы должны быть опытными в управлении данными, которое включает извлечение, преобразование и загрузку данных. Это означает, что вам нужно извлечь данные из различных источников, затем преобразовать их в необходимый формат для анализа и, наконец, загрузить их в хранилище данных. Для обработки этих данных существуют различные платформы, такие как Hadoop, Spark. Теперь, когда вы завершили процесс управления данными, вы также должны быть знакомы с обработкой данных. Обработка данных — это в основном означает, что данные в хранилище должны быть очищены и унифицированы согласованным образом, прежде чем их можно будет проанализировать для получения каких-либо действенных данных.
5. Интуиция данных. Не стоит недооценивать силу интуиции данных. Фактически, это основной нетехнический навык, который отличает Data Scientist от Data Analyst. Интуиция данных в основном включает в себя поиск шаблонов в данных там, где их нет. Это почти то же самое, что найти иголку в стоге сена, которая является реальным потенциалом в огромной неисследованной куче данных.

Интуиция данных — это не тот навык, которому можно так просто научиться. Скорее это происходит из опыта и продолжающейся практики. А это, в свою очередь, делает вас гораздо более эффективным и ценным в своей роли Data Scientist.

6. Навыки общения.Вы должны хорошо владеть навыками общения, чтобы стать экспертом в области Data Scientist. Это потому, что, хоть вы и понимаете данные лучше, чем кто-либо другой, вам необходимо преобразовать полученные данные в количественную оценку, чтобы нетехническая команда смогла принять решение.

Это также может включать data storytelling! Таким образом, вы должны иметь возможность представлять свои данные в формате повествования с конкретными результатами и значениями, чтобы другие люди могли понять, что вы говорите. Это связано с тем, что в конечном итоге анализ данных становится менее важным, чем практические выводы, которые можно получить из данных, что, в свою очередь, приведет к росту бизнеса.


Источник: habr.com

Комментарии: