Как нейронная сеть SincNet выделяет значимые частоты в звуке через Back Propagation

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости

Новостная лента форума ailab.ru


Недавно вышла одна очень интересная статья "Speaker Recognition from raw waveform with SincNet", в которой была описана end-to-end архитектура нейронной сети для распознавания говорящего по голосу. Ключевая особенность этой архитектуры — специальные одномерные сверточные слои, которые имеют всего два параметра с четкой интерпретацией. Интерпретируемость параметров нейронной сети — дело довольно затруднительное, поэтому эта статья привлекла мой интерес.

Если заинтересовало описание идеи этой статьи, а также почему эта идея близка по смыслу к построению мел-спектрограмм, то милости прошу под кат.

Отмечу, что все изображения, используемые в этом посте либо взяты из исходной статьи, либо их можно получить с помощью Jupyter Notebook'а, хранящегося в этом репозитории.

Авторами описываемой статьи был выложен исходный код на гитхаб, с ним можно ознакомиться здесь.

Мел-спектрограммы

Чтобы понять суть этой статьи, давайте сначала вспомним, что такое мел-спектрограмма, как ее получить и в чем ее смысл. Если эта тема вам знакома, то эта часть будет не очень интересной. Ее вычисляют по обычной спектрограмме, построенной с помощью оконного преобразования Фурье:

$F(k, m) = sumlimits_{n=0}^{L - 1} x[n+m] w[n] e^{-i{{2 pi}over{L}} k n}$

Суть этой операции в последовательном применении преобразования Фурье к коротким кусочкам речевого сигнала, домноженным на некоторую оконную функцию. Результат применения оконного преобразования — это матрица, где каждый столбец является спектром короткого участка исходного сигнала. Посмотрите на пример ниже:

Эксперименты ученых показали, что человеческое ухо более чувствительно к изменениям звука на низких частотах, чем на высоких. То есть, если частота звука изменится со 100 Гц на 120 Гц, человек с очень высокой вероятностью заметит это изменение. А вот если частота изменится с 10000 Гц на 10020 Гц, это изменение мы вряд ли сможем уловить.

В связи с этим была введена новая единица измерения высоты звука — мел. Она основана на психо-физиологическом восприятии звука человеком, и логарифмически зависит от частоты:

$mel = 1127.01048 ln(1 + {{freq}over{700}})$

Собственно, мел-спектрограмма — это обычная спектрограмма, где частота выражена не в Гц, а в мелах. Переход к мелам осуществляется с помощью применения мел-фильтров к исходной спектрограмме. Мел-фильтры представляют из себя треугольные функции, равномерно распределенные на мел-шкале. В качестве примера здесь изображены 10 мел-фильтров (на практике их берут больше, здесь их мало для наглядности):

При переводе в частотную шкалы, те же самые фильтры будут выглядеть так:

Каждый столбец исходной спектрограммы скалярно умножается на каждый мел-фильтр (размещенный на частотной шкале), после чего получается вектор чисел, по размеру равный количеству фильтров. На картинке ниже изображен один из столбцов спектрограммы (значения амплитуды переведены в логарифмический масштаб для наглядности, то, что на картинке кодировалось цветом, здесь отражено по оси ординат) и два мел-фильтра, с помощью которых строится мел-спектрограмма:

В результате таких преобразований значения из низких частот спектрограммы остаются практически неизменными на мел-спектре, а в высоких частотах происходит усреднение значений из более широкого диапазона. В качестве примера предлагаю посмотреть на мел-спектрограмму, построенную по предыдущей спектрограмме с использованием 64 мел-фильтров:

Резюмируя все вышесказанное: на мел-спектрограмме сохраняется больше информации, которая хорошо воспринимается и различается человеком, чем на обычной спектрограмме. Иными словами, такое представление звука больше сфокусировано на низких частотах, и меньше — на высоких.

При чем же здесь SincNet?

Вспомним, что мел-шкала была создана на основе человеческого психо-физического восприятия звука. Но что если мы хотим выбрать другие полосы частот, которые нас интересуют больше чем остальные в какой-либо конкретной задаче? Как выбрать самый лучший набор фильтров для решения какой-либо задачи?

Именно эту задачу и решает предложенная авторами архитектура.

Авторы рассматривают в качестве фильтра следующую функцию:

$G(f, f_1, f_2) = rect({{f}over{2 f_2}}) - rect({{f}over{2 f_1}})$

$rect(t)$ в этой формуле — это прямоугольная функция. Такой фильтр задает диапазон частот от $f_1$ до $f_2$. Вот ее график:

С помощью обратного преобразования Фурье для этой функции можно получить ее аналог во временной области:

$g(n, f_1, f_2) = 2 f_2 sinc(2 pi f_2 n) - 2 f_1 sinc(2 pi f_1 n)$

$sinc(t) = {{sin(t)}over{t}}$

Функция $g(t)$ — это импульсная характеристика идеального полосового фильтра, который нельзя реализовать практически, поэтому авторы усекают эту функцию окном Хэмминга. В цифровой обработке сигналов такой подход называется синтезом фильтров методом окон.

Усеченный окном вариант функции $g$ авторы предлагают использовать в качестве шаблона для всех сверток, применяемых к сырым аудио данным. Эта функция дифференцируема по параметрам $f_1$ и $f_2$, а значит ее можно использовать при оптимизации параметров сети методом обратного распространения ошибки.

По теореме о свертке, свертка исходного сигнала с функцией $g$ эквивалентна умножению спектра исходного сигнала на функцию $G$. Грубо говоря, выполняя свертку исходного сигнала с функцией $g$, мы "обращаем внимание" нейронной сети на данный диапазон частот в рассматриваемом сигнале.

Конечно, здесь не применяется преобразование Фурье и явно нейросети не сообщаются конкретные значения спектра в диапазоне $[f_1;f_2]$. По всей видимости, задача извлечения спектральных характеристик возлагается на следующие блоки, расположенные в нейронной сети.

Из достоинств такого подхода, авторы отмечают следующее:

  1. Быстрая сходимость
  2. Гораздо меньшее количество параметров. В классическом сверточном блоке количество параметров равно длине свертки. При описанном же подходе, количество параметров не зависит от длины свертки и равно 2
  3. Интерпретируемость параметров

Выводы

Фильтров, с помощью которых преобразуются спектрограммы, существуют много. Например, кроме описанных мел-фильтров, есть еще барк-фильтры (почитать можно здесь и здесь). По крайней мере барк — это тоже психофизическая величина, подобранная "под человека".

В своем исследовании авторы предложили метод, по которому можно заставить нейронную сеть самостоятельно выбрать наиболее подходящие диапазоны частот в процессе обучения в зависимости от набора данных. Как по мне, это очень похоже на процесс построения мел-спектрограммы, при котором больший приоритет отдается низким частотам. Вот только мел-спектрограммы придумали на основе человеческого восприятия звука, а в предложенном методе нейросеть сама решает, что важно, а что нет.


Источник: habr.com

Комментарии: