Диагностика патологий клеточного метаболизма при ней­ро­де­ге­не­ра­тив­ных заболеваниях

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Нейродегенеративные заболевания характеризуются постепенной потерей нейронов в различных структурах центральной нервной системы. Одной из причин гибели нейронов могут быть нарушения работы митохондрий. Рисунок Елены Беловой, модифицирован с использованием рисунка из Research: Spinal cord injuries may cause brain degeneration
  • АВТОР: Виктор Лебедев
  • РЕДАКТОР: Андрей Панов

Нейродегенеративные заболевания — это большая группа неврологических расстройств, связанная с постепенным уменьшением количества нервных клеток из-за специфических изменений их метаболизма. К числу этих недугов относят болезни Альцгеймера, Паркинсона и ряд других, более редких патологий (например, хорею Гентингтона). Современные методы лечения имеют ограниченную эффективность и в лучшем случае помогают замедлить их прогрессирование. Если существующие подходы к решению проблемы не работают, значит нужно подойти к ней с другой стороны. И новые данные могут оказаться полезными для разработки более эффективных методов лечения.

Статья, которую вы сейчас читаете, является частью спецпроекта «Биоэнергетика», которую «Биомолекула» делает совместно с компанией «БиоХимМак». В цикле уже вышел обзор о болезнях и изменениях клеточного метаболизма [1] и статья, посвящённая нарушению работы митохондрий при онкологических заболеваниях [2]. В них обсуждается роль митохондрий в здоровых клетках и клетках, которые подвержены патологическим изменениям. Эта, последняя статья цикла, рассказывает о митохондриальной дисфункции при нейродегенеративных заболеваниях — болезнях Альцгеймера, Паркинсона и других неврологических расстройствах. Сначала мы обсудим, как при этих болезнях меняется функционирование митохондрий. Затем рассмотрим существующие методы исследования их работы в нервных клетках и использование получаемой при этом информации.

Клетка с севшими батарейками

Каждое из нейродегенеративных заболеваний связано с изменениями разных метаболических путей внутри нервной клетки. Исследования выявили биохимические маркеры, соответствующие каждой из болезней[3].

БолезньБиохимические маркеры болезни

Болезнь Альцгеймера: A?1—42 пептид в плазме и цереброспинальной жидкости (ЦСЖ), Тау-белок в ЦСЖ, Фосфорилированный тау-белок

Болезнь Паркинсона: Снижение уровня дофаминового транспортёра (DAT), Тельца Леви

Боковой амиотрофический склерозЦитокины, Глутатион, 8-гидрокси-2’-деоксигуанозин, Супероксиддисмутаза-1, Метаботропный рецептор к глутамату 2-го типа

Болезнь Гентингтона: Гормоны роста, Цитокины, Глутатион, 8-гидрокси-2’-деоксигуанозин, Супероксиддисмутаза-1, Метаботропный рецептор к глутамату 2-го типа

Углубленный анализ метаболических изменений в нервных клетках определил, что в патологии каждого нейродегенеративного заболевания в той или иной степени задействованы митохондрии. Митохондрии — это органеллы, которые, несмотря на свой небольшой размер, являются активными участниками ключевых биохимических процессов, протекающих в клетках [1]. Основная функция митохондрий заключается в поддержании энергетического баланса клеток. Эти органеллы поддерживают окислительно-восстановительный баланс клетки и регулируют гомеостаз кальция. С работой митохондрий напрямую связаны процессы запрограммированной и не запрограммированной клеточной смерти.

Обсуждая вопрос энергетического обеспечения, надо вспомнить, что мозг потребляет до 20% всей энергии, вырабатываемой в организме. И если энергетическая функция митохондрий будет нарушена, это быстро скажется на работе центральной нервной системы. Важности митохондриям добавляет то, что нейроны в сравнении с другими типами клеток обладают меньшей способностью самостоятельно получать энергию за счет гликолиза. Получается, изменения в работе митохондрий приведут к тому, что нейрон перестает полноценно выполнять свои функции.

Правила движения митохондрий

Митохондриальная дисфункция при нейродегенеративных заболеваниях хорошо изучена [4]. Одной из ее причин может быть изменение нормальной динамики этих органелл. В нервной клетке с митохондриями постоянно что-то происходит [5]. Они:

  • делятся;
  • сливаются;
  • перемещаются внутри клетки.

Чтобы наглядно представить себе эти процессы, сравним митохондрию с комочком теста на столе при приготовлении пирожков. Если комочек большой, то из него можно сделать два комочка поменьше. Если теста мало, то можно взять другой комочек и слепить их вместе. Когда теста в комке достаточно, он отправляется туда, куда нужно — в угол доски, где его ждет дальнейшее включение в пекарский «метаболизм».

Изменение числа и положения митохондрий в клетке помогает нейрону адаптироваться к изменению функций. Транспорт митохондрий в аксон является реакцией на повышение потребности в энергии. Число митохондрий также меняется в ответ на изменение условий. Если нужно меньше энергии, число митохондрий снижается, а вслед за этим снижается и энергопродукция клетки.

Нарушение динамики митохондрий изменяет их функциональное состояние и приводит к нарушениям в работе нервной клетки (рис. 1).

Рисунок 1. Динамика митохондрий в клетках животных. Митохондрии в нейронах могут разделяться (а) и сливаться (б). Кроме этого, в соответствии с энергетическими потребностями клетки митохондрии могут перемещаться в область аксона и покидать ее (в—д).
  • В делении митохондрий важную роль играют белки Drp1 (dynamin-related protein 1) и Dyn2 (dynamin-like protein). Drp1 формирует на поверхности делящейся митохондрии два кольца, но окончательное разделение митохондрий возможно только при помощи Dyn2.
  • Для нормального слияния митохондрий необходимо, чтобы белки Mfn1 (mitofusin 1), Mfn2 (mitofusin 2) и OPA1 (optic atrophy protein 1) помогли органеллам «состыковаться». Белки Mfn1/2 отвечают за «стыковку» внешних мембран митохондрий, а OPA1 соединяет их внутренние мембраны.
  • Движение митохондрий по микротрубочкам в синаптическую часть нейрона и из нее осуществляется при помощи двух разных белковых комплексов. Антероградное движение(перемещение митохондрий в сторону синапса) происходит благодаря кинезиновому комплексу (kinesin complex). Ретроградное движение органелл (возвращение митохондрий из синаптической части) становится возможным при участиии динеин-динактинового комплекса (dynein/dynactin complex). Митохондрии крепятся к обоим двигательным комплексам при помощи белков Miro1/2 (mitochondrial Rho GTPase 1 и 2) и Milton1/2 (или trafficking kinesin protein 1 и 2, TRAK 1 и 2). На процесс транспорта могут влиять белки Drp1 и Mfn2, задействованные в разделении и слиянии митохондрий. Дефицит Mfn2 может привести к тому, что митохондрии будут плохо прикрепляться к микротрубочкам, по которым они доставляются в аксон и из него [6]. Проблемы с транспортом митохондрий при недостаточной функции Drp1 могут быть вызваны тем, что не разделенные, удлиненные митохондрии не могут полноценно прикрепиться к транспортным белкам [7].

Нарушение динамики митохондрий при нейродегенеративных заболеваниях

Мутации в генах, которые кодируют факторы разделения, и дефицит самих факторов приведут к избыточному слиянию митохондрий. При дефектах в белках, ответственных за слияние митохондрий, мы будем наблюдать их избыточную фрагментацию. Нарушение слияния митохондрий в конечном счете может привести к мутациям в митохондриальной ДНК и появлению органелл с измененной функцией. Прежде всего, это касается процессов окислительного фосфорилирования.

Нарушения в динамике митохондрий при отдельных нейродегенеративных заболеваниях:

  • Болезнь Альцгеймера (БА) [8]. Характерна избыточная фрагментация митохондрий с повреждением внутренней мембраны [9]. Сами по себе бета-амилоид [10] и тау-белок [11], которые накапливаются в клетках при болезни Альцгеймера, способны подавлять аксональный транспорт митохондрий, приводя к нарушениям высвобождения нейромедиатора и синаптической пластичности в нейроне.
  • Болезнь Паркинсона (БП). Связана с подавлением митохондриального разделения [12]. Нарушение функции митохондрий приводит к накоплению окисленного дофамина [13]. Это вызывает аккумуляцию ?-синуклеина и нарушение функции лизосом. Последний фактор негативно влияет на митохондриальную функцию, и так образуется метаболический порочный круг.
  • Боковой амиотрофический склероз (БАС). Мутации в гене супероксиддисмутазы-1 нарушают функцию регуляторов слияния и разделения митохондрий [14], что приводит к их фрагментации. Наблюдаемые при БАС изменения в белке TDP-43 (TAR DNA-binding protein 43) приводят к таким же изменениям [15].
  • Болезнь Гентингтона (БГ). Мутации в белке HTT (huntingtin) нарушают динамику, а затем и функцию митохондрий, косвенно влияя на белок Drp1 [16].

Все изменения в функции митохондрий нельзя объяснить исключительно нарушениями их динамики. Первичные метаболические нарушения при нейродегенеративных заболеваниях (см. табл. 1) могут вмешаться в работу митохондрий и сами по себе.

Ключевой «цех» митохондрий, который активно производит АТФ — это дыхательная цепь переноса электронов (рис. 2). Она состоит из четырех комплексов, расположенных на внутренней мембране митохондрии [17].

Рисунок 2. Строение дыхательной цепи в митохондриях. C I — комплекс I (NADH-дегидрогеназный комплекс); C II — комплекс II (сукцинатдегидрогеназа); C III — комплекс III (цитохром-bc1-комплекс); C IV — комплекс IV (цитохром-с-оксидаза); Cyt C — цитохром C.

Продолжение в источнике: https://biomolecula.ru/articles/diagnostika-patologii-kletochnogo-metabolizma-pri-neirodegenerativnykh-zabolevaniiakh


Источник: m.vk.com

Комментарии: