6 крупных open source проектов в сфере Data Science |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-11-20 10:17 6 проектов с открытым исходным кодом из различных областей Data Science для внедрения в ваши аналитические решения или украшения портфолио.
Начинающие аналитики данных уже на ранних этапах задумываются о вариантах приложения недавно приобретенных знаний или участвуют в соревнованиях Kaggle. Однако творческие силы можно и сразу направить на полезный замысел, нацеленный на улучшение мира, уменьшение количества рутинных действий и решение конкретных практических задач. Подходящими площадками для проявления талантов специалистов Data Science являются open source проекты. Ниже мы рассмотрим шесть репозиториев программ с открытым исходным кодом, участие в которых разнообразит ваше резюме или усилит разрабатываемые аналитические решения. 1. Синтез сложных видео из простых моделей Идея vid2vid состоит в преобразовании семантически простой входной модели (обычно в форме видеоролика) в ультра-реалистичное выходное видео. Это не совсем то же, что DeepFake, хотя и предполагает перенос особенностей одной модели на механику другой системы. Наглядно разнообразные примеры использования представлены в следующем YouTube-ролике.
В настоящее время есть два существенных ограничения моделей vid2vid:
Репозиторий GitHub представляет собой реализацию Few-Shot vid2vid на фреймворке PyTorch. Имеется также научная статья, описывающая результат. 2. Сверхлегкий и быстрый детектор лиц Второй пункт в нашей подборке – удивительный опенсорс-релиз ультралегкой модели распознавания лиц. Не бойтесь, что описание дано на китайском языке – страница легко переводится с помощью Google Translate. Куда важнее, что размер модели составляет всего лишь 1 Мб! Для детектирования лиц используется архитектура, основанная на библиотеке libfacedetection. Существуют две версии модели:
Такая легковесная библиотека – блестящая возможность для создания более сложных моделей компьютерного зрения на компактных системах. Если вы новичок в мире распознавания лиц и computer vision, у нас имеется учебный план освоения компьютерного зрения. 3. Точный и быстрый детектор объектов для автономного вождения В основе идеи автономного управления транспортными средствами лежат алгоритмы обнаружения объектов. Высокие точность обнаружения и скорость вывода данных жизненно важны для обеспечения безопасности жизни. Архитектура библиотеки Gaussian YOLOv3 повышает точность обнаружения и поддерживает работу в режиме реального времени, что является критическим аспектом для построения автопилотов. В сравнении с обычным YOLOv3 данная модификация имеет лучшие показатели на датасетах, напрямую связанных с вождением транспорта – KITTI и Berkeley deep drive. 4. Преобразование текста от Google Research Как Google может остаться вне списка «последних достижений»? Компания выделила огромные средства на машинное обучение, глубокое обучение, обучение с подкреплением. К счастью, время от времени они открывают свои проекты с открытым исходным кодом, и у них есть чему поучиться. Одним из таких решений является T5 (сокращение от Text-to-Text Transfer Transformer). Идея основана на концепции переноса обучения при обработке естественного языка. Разработанная структура позволяет получать современные результаты в различных задачах, связанных с текстом: обобщение, поиск ответа на заданный вопрос, классификация текста и многое другое. Установить T5 для Python можно с помощью pip: 5. Крупнейшая карта знаний В теории Data Science существуют определенные примеры использования теории графов. Не совсем привычными в этом плане являются тематические карты, диаграммы связей и карты концептов. Следующий проект является своеобразным монстром среди подобных систем. Это самая большая карта знаний, сделанная в Китае и состоящая из более, чем 140 млн узлов. Набор данных организован в виде троек 6. Библиотека визуализации данных в JavaScript RoughViz – библиотека JavaScript для визуализации данных в стиле нарисованных от руки изображений. Вы можете установить RoughViz, используя следующую команду: Репозиторий GitHub содержит подробные примеры и код о том, как использовать RoughViz. Вот различные диаграммы, которые вы можете сгенерировать:
Если вы удивлены, что JavaScript может использоваться в Data Science, почитайте нашу публикацию о JavaScript-версии TensorFlow. Какие еще open source проекты в сфере Data Science вы знаете? Источники Источник: proglib.io Комментарии: |
|