Strong «caffe» на завтрак и выездные хакатоны: почему это важно для развития Data Science сообщества |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-10-03 17:24 Я Data Scientist в команде Data Lake Platform в Райффайзенбанке. Три года назад в банке не было направления Big Data, а сейчас у нас есть отдельная платформа для работы с большими данными и активно развивающееся сообщество. По мере развития data driven культуры мы сталкиваемся с множеством вопросов: техническими, коммуникационными и не только.
В статье хочу рассказать, как наше сообщество Raiffeisen Data University помогает решать часть из них. Проблемы масштабируемости Пару лет назад все Data Scientist-ы обитали разрозненно, каждый в своих задачках — ни о каком сообществе никто не помышлял. Идей, требующих знаний в сфере анализа данных, становилось все больше, как и подразделений с Data Scientist-ами в штате.
С какой стороны подступиться к этим вопросам и начать путь развития до зрелой data-driven компании? Можно придумать разные стратегии: всех Data Scientist-ов собрать в один большой отдел или добавить во все команды по Chief-у и нанять еще одного самого главного Chief-a, который бы выстраивал вектор развития. Мы решили пойти другим путем. Так зародилась идея Raiffeisen Data University – RDU. Это не университет в его стандартном понимании, это гибкий механизм, который помогает Data Scientist-ам решать их проблемы через организацию различных активностей. Как же ему это удается? Все гениальное просто Для начала нужно было познакомить и синхронизировать людей из разных бизнес-подразделений. Самое простое, что приходит в голову – организовать встречу. Strong «caffe» на завтрак Митапы требуют некоторой подготовки и случаются примерно раз в месяц-два. А что-то новое и интересное происходит постоянно, поэтому для поддержания коммуникаций мы встречаемся на Data Science завтраке. Количество участников варьируется Улучшение learning rate «Еще больше профита, еще больше знаний!» — открыто желали мы. Так появился соревновательный элемент – зарешки, как мы их называем. Вдохновлялись идеей тренировок по машинному обучению в Яндексе, кастомизировав под свои нужды и возможности. Запускается соревнование по открытым данным примерно на три недели:
В рамках одного соревнования стараемся сконцентрироваться на одной теме: грязные данные, временные ряды, анализ текстов. Каждый выбирает инструменты, которые ему интересно попробовать, но до сих пор не решался, или то, что должно принести максимальный результат на лидерборде. Самая прикольная зарешка была на тему Reinforcement learning – нужно было обучить своего агента взаимодействовать со средой Atari. Для подведения итогов организаторы соревнования устроили нам баттл между ботами и людьми в трех играх – Packman, Break out, Space Invaders. В итоге в Packman победили c большим отрывом люди, в остальных – человечество проиграло Skynet. Открой в себе Data Scientist-а Менеджеров тоже не оставили в покое. Внутренний хакатон одного дня для всех, кто связан с аналитикой, но плохо понимает, как устроена работа с данными – хорошая возможность быстро погрузиться в кухню Data Science задач. В начале дня проводится обзорная лекция о понятиях, алгоритмах, наиболее распространенных метриках в задачах классификации и регрессии. После этого рассматривается реальный кейс, который участникам предлагается решить на наших данных. Время на решение около 4 часа, поэтому, чтобы дело шло продуктивно, в помощь каждой команде отправляется один Data Scientist. Выживет сильнейший Но самое интересное приходится обычно на сентябрь, когда DS-команда отправляется на двухдневный хакатон на природу, в очень живописное местечко с удобной инфраструктурой. На хакатон организаторы приглашают для нас внешних опытных менторов. В прошлом году Эмели Драль и Александр Гущин подготовили задачу на определение жанра фильма по диалогу из него. Почти 40 тысяч диалогов обучающей выборки, 20 различных жанров из 438 фильмов – речь шла о фильмах с английскими субтитрами. Вместо заключения В статье я поделилась проблемами становления Data Science культуры в компании и каким образом Raiffeisen Data University помогает Data Scientist-ам на этом пути. Источник: habr.com Комментарии: |
|