Нейросеть научили восстанавливать «мысли» человека по электроактивности его мозга в режиме реального времени |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-10-17 12:54 Исследователи российской ГК «Нейроботикс» и Лаборатории нейроробототехники МФТИ научились воссоздавать по электрической активности мозга изображения, которые человек видит в данный момент. Это позволяет создавать новый тип устройств для постинсультной реабилитации, управляемых сигналами мозга. Исследователи российской ГК «Нейроботикс» («Нейроассистивные технологии») и Лаборатории нейроробототехникиМФТИ научились воссоздавать по электрической активности мозга изображения, которые человек видит в данный момент. Это позволяет создавать новый тип устройств для постинсультной реабилитации, управляемых сигналами мозга. Препринт работыдоступен на bioRxiv. Для развития методов лечения когнитивных нарушений, постинсультной реабилитации и создания устройств, управляемых мозгом, необходимо понять то, как мозг кодирует информацию. Ключевая задача для понимания принципов его работы — исследование активности мозга, возникающей при визуальном восприятии информации. Все существующие решения в области распознавания изображений по сигналам мозга используютфункциональную магнитно-резонансную томографию (фМРТ) илианализ сигнала, получаемого непосредственно с нейронов. Особенности этих методов ограничивают их применение в клинической практике и повседневной жизни. Интерфейс «мозг — компьютер», созданный командой ученых из МФТИ и «Нейроботикс», напротив, использует электроэнцефалограмму (далее ЭЭГ), снимаемую с поверхности головы, и нейросети. Эта разработка с помощью ЭЭГ в режиме реального времени реконструирует кадры из видео, которое смотрит человек. Владимир Конышев, руководитель лаборатории нейроробототехники МФТИ, поясняет: «Работа ведется в рамках проекта “Ассистивные технологии” НейроНет НТИ, в котором ключевую роль играет интерфейс “мозг — компьютер”, используемый для управления экзоскелетом руки при реабилитации после инсультов, а также для управления электроколяской парализованными людьми. Конечная цель работы — увеличить точность нейроуправления при его использовании не только пациентами, но и здоровыми людьми». Эксперимент состоял из двух частей. В первой части исследователи произвольно выбрали пять разных категорий роликов с YouTube: «абстракции», «водопады», «лица людей», «скорость» — видеосъемку от первого лица гонок на снегоходах, водных мотоциклах, ралли — и «движущиеся механизмы», которые показывали испытуемым, записывая при этом ЭЭГ. Ролики длились по 10 секунд, в сумме вся сессия записей у каждого испытуемого составляла 20 минут. В этой части эксперимента ученым удалось доказать, что частотные характеристики волновой активности (спектры) ЭЭГ для разных категорий видеороликов достоверно различаются. Это позволило анализировать реакцию мозга на видеоролики в режиме реального времени. Для второй части эксперимента были произвольно выбраны три категории из вышеперечисленных видео. Специалисты разработали две нейросети, одна из которых генерировала произвольные изображения этих же категорий из «шума», а вторая — создавала похожий «шум» из ЭЭГ. Затем авторы работы обучили эти нейросети работать совместно так, чтобы по записанному сигналу ЭЭГ создавались кадры, похожие на те, которые видели люди в момент записи. Для проверки испытуемым показали совершенно новые видео тех же категорий, снимая при этом ЭЭГ и в реальном времени отправляя ее на нейросети. Нейросети хорошо справились и с этой задачей: создавали реалистичные кадры, по которым в 90% случаев можно было определить категорию видео. Видео с результатами эксперимента выложены в свободный доступ. «Энцефалограмма — следовой сигнал от работы нервных клеток, снимаемый с поверхности головы. Раньше считалось, что исследовать процессы в мозге по ЭЭГ — это все равно, что пытаться узнать устройство двигателя паровоза по его дыму, — говорит Григорий Рашков, один из авторов работы, младший научный сотрудник МФТИ и программист-математик компании «Нейроботикс». — Мы не предполагали, что в ней содержится достаточно информации, чтобы хотя бы частично реконструировать изображение, которое видит человек. Однако оказалось, что такая реконструкция возможна и демонстрирует хорошие результаты. Более того, на ее основе даже можно создать работающий в реальном времени интерфейс “мозг — компьютер”. Это очень обнадеживает. Сейчас создание инвазивных нейроинтерфейсов, о которых говорит Илон Маск, упирается в сложность хирургической операции и то, что через несколько месяцев из-за окисления и естественных процессов они выходят из строя. Мы надеемся, что в будущем сможем сделать более доступные нейроинтерфейсы, не требующие имплантации». Для справки: проект «Ассистивные нейротехнологии» при поддержке NeuroNet НТИ был начат в 2017 году, направлен на разработку комплекса устройств для реабилитации больных после инсульта и нейротравм головы. Проект включает разработку комплекса устройств — это нейрогарнитура NeuroPlay, нейротренажер, ФЭС, ТЭС, Когниграф, Робоком и другие. Лаборатория нейророботехники МФТИ образована в 2017 году в рамках Программы «5-100». Основное направление деятельности — разработка антропоморфной робототехники, а также оборудования для научных исследований в области нейронаук, физиологии и поведения. Источник: naked-science.ru Комментарии: |
|