Смартфон научили определять пищевую ценность еды по фотографии |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-09-27 18:11 Канадские разработчики создали приложение для смартфона, способное в реальном времени распознавать в кадре блюда и их компоненты и показывать пользователю пищевую ценность. Разработчики представили приложение на конференции MVA 2019 и опубликовали статью о нем на arXiv.org. Некоторые люди для снижения веса или других оздоровительных целей ведут подробный дневник приема еды, подсчитывая суммарную калорийность и другие свойства. Для этого, однако, требуется вручную вводить данные и искать пищевую ценность того или иного продукта или же его компонентов. Существуют приложения, упрощающие этот процесс, например, с помощью распознавания готовых продуктов через штрих-коды на упаковке, но они не подходят для еды, приготовленной дома или в кафе. Разработчики под руководством Желько Жилича (Zeljko Zilic) из Университета Макгила создали приложение для Android, способное в реальном времени распознавать еду и показывать ее пищевую ценность. В приложении для определения и распознавания объектов в кадре используется сверточная нейросеть, основанная на популярной архитектуре YOLO. Получая изображение, нейросеть распознает на нем области, в которых находятся известные ей объекты. После этого алгоритм выделяет эти области и подписывает соответствующим образом. Удобство приложения заключается в том, что оно не просто распознает блюда или компоненты в кадре, но и выдает их пищевую ценность: калорийность, содержание белков, жиров и углеводов, а также соли, холестерина и некоторых витаминов. Для этого авторы использовали базу данных Nutritionix, содержащую данные о более 700 тысячах блюд. Стоит отметить, что приложение рассчитывает параметры, исходя из размера средней порции определенного блюда. В 2016 году на Indiegogo запустили сбор средств на насадку для смартфона и приложение, позволяющие с помощью лазера сканировать продукты и подсчитывать их калорийность, а также содержание в ней белков, углеводов и жиров. Григорий Копиев Источник: nplus1.ru Комментарии: |
|