Российские и японские физики выяснили, как превратить окись меди в абсолютно плоский материал |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-08-13 18:13 Российские и японские физики выяснили, как можно превратить окись меди в абсолютно плоский материал, похожий по своим свойствам на графен, "нобелевский углерод", сообщает РИА Новости. Листы из этого вещества могут стать основой памяти будущего и квантовых компьютеров, пишут ученые в Journal of Physical Chemistry C. "Плоские листы окиси меди похожи по своей структуре на решетку, состоящую не из шестиугольников, как графен, а прямоугольников. Поведением электронов в ней можно гибко управлять. Это делает этот материал очень интересным для разработчиков спиновой электроники", — пишут ученые. Химики, физики и другие представители естественных наук достаточно долго считали, что в природе могут существовать только полностью "трехмерные" материалы, имеющие высоту, ширину и длину. Эти представления начали меняться только в начале 50 годов прошлого века, когда физики-теоретики доказали, что "плоские" атомные структуры могут существовать в принципе. После долгих безупешных попыток создать подобный материал, эту задачу удалось решить в 2004 году паре российско-британских физиков – Андрею Гейму и Константину Новоселову. Они открыли очень простой, но при этом очень остроумный и эффективный способ производства графена, "плоской" формы углерода, играя с кусочками графита при изучении их электрических свойств. За последующие 15 лет физики и химики открыли несколько десятков подобных материалов, часть из которых оказалась еще более интересными, чем графен. Некоторые из них состоят не только из атомов одного химического элемента, но и двух или даже трех различных компонентов, такие как "плоские" магниты на базе соединения хрома и йода, а также редкоземельных металлов и кремния. Недавно российские исследователи смогли создать и плоские структуры из чистого золота и других металлов, чье существование раньше считалось невозможным по целому ряду причин. Ученые обошли эти ограничения, осаждая пары металлов на поверхности графена и прочих "плоских" материалов. Эти опыты, как отмечают Александр Квашнин, старший научный сотрудник "Сколтеха", а также его коллеги из других российских и японских научных центров, натолкнули физиков на мысль, что еще более "невозможные" плоские материалы можно получить, используя не одиночные листы графена, а своеобразные "бутерброды" из этой формы углерода. Руководствуясь этой идеей, ученые попытались создать первый плоский материал на базе окиси меди. Он очень давно интересует физиков сразу по нескольким причинам, в том числе и потому, что он может стать основой для первых "комнатных" или просто высокотемпературных сверхпроводников. Многие исследователи сомневались в том, что плоская версия оксида меди может существовать в принципе, так как они считали, что она будет нестабильной при любой мыслимой комбинации "нормальных" температур и давлений. Квашнин и его коллеги показали, что это на самом деле не так, синтезировав этот материал и детально изучив его свойства. Для этого ученые просчитали то, как будет формироваться слой из окиси меди в промежутке между двумя слоями графена или других плоских материалов, используя алгоритм USPEX, созданный известным российским химиком Артемом Огановым, профессором МФТИ и "Сколтеха". Эти расчеты подсказали ученым, как следует синтезировать этот материал, и какими свойствами он будет обладать. Вдобавок, они указали на то, что плоский слой из этого окиси меди будет оставаться стабильным не только при комнатной температуре, но и при более высоких значениях. Синтезировав этот материал, Квашнин и его команда детально изучили его свойства и открыли несколько правил, задающих то, почему одиночные ячейки этого плоского материала имеют четырехугольную форму и как именно он образуется. Эти знания, как надеются ученые, помогут инженерам и физикам использовать его для создания спиновой электроники или квантовых вычислительных приборов. Иллюстрация: © Kvashnin et al. / Journal of Physical Chemistry C 2019 Источник: scientificrussia.ru Комментарии: |
|