IBM выпустила инструментарии Trusted AI для снижения смещения в ML |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-08-29 15:08 IBM выпустила три опенсорсных инструментария на Python, которые позволяют уменьшить смещение в обучающих выборках и моделях машинного обучения, пишет Infoworld. Инструменты, которые помогают повысить надёжность AI-систем, разработаны в рамках проекта Trusted AI. Исходный код всех трёх из них доступен на GitHub. Инструментарий AI Explainability 360 содержит 8 алгоритмов, которые помогают лучше понять, как ML-модели предсказывают метки. AI Fairness 360 включает 70 метрик для выявления смещений в датасетах и моделях, а также 10 алгоритмов для снижения этих смещений. Adversarial Robustness Toolbox представляет собой Python-библиотеку, которая позволяет исследователям и разработчикам создавать средства защиты глубоких нейросетей от adversarial-атак. Источник: dev.by Комментарии: |
|