![]() |
![]() |
![]() |
|||||
![]() |
Дискретная математика при внедрении WMS-системы: кластеризация партий товаров на складе |
||||||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-08-14 03:19 ![]() В статье рассказывается как при внедрении WMS-системы мы столкнулись с необходимостью решения нестандартной задачи кластеризации и какими алгоритмами мы ее решали. Расскажем, как мы применяли системный, научный подход к решению проблемы, с какими сложностями столкнулись и какие уроки вынесли.
Эта публикация начинает цикл статей, в которых мы делимся своим успешным опытом внедрения алгоритмов оптимизации в складские процессы. Целью цикла статей ставится познакомить аудиторию с видами задач оптимизации складских операций, которые возникают практически на любом среднем и крупном складе, а также рассказать про наш опыт решения таких задач и встречающиеся на этом пути подводные камни. Статьи будут полезны тем, кто работает в отрасли складской логистики, внедряет WMS-системы, а также программистам, которые интересуются приложениями математики в бизнесе и оптимизацией процессов на предприятии. Узкое место в процессах В 2018 году мы сделали проект по внедрению WMS-системы на складе компании «Торговый дом «ЛД» в г. Челябинске. Внедрили продукт «1С-Логистика: Управление складом 3» на 20 рабочих мест: операторы WMS, кладовщики, водители погрузчиков. Склад средний около 4 тыс. м2, количество ячеек 5000 и количество SKU 4500. На складе хранятся шаровые краны собственного производства разных размеров от 1 кг до 400 кг. Запасы на складе хранятся в разрезе партий, так как есть необходимость отбора товара по FIFO. ![]() На лицо неоптимальное использование складских мощностей. Чтобы представить масштаб бедствия могу привести цифры: в среднем таких ячеек объемом более 1м3 с «мизерными» остатками в разные периоды работы склада насчитывается от 100 до 300 ячеек. Так как склад относительно небольшой, то в сезоны загрузки склада этот фактор становится «узким горлышком» с сильно тормозит складские процессы. Идея решения проблемы Возникла идея: партии остатков с наиболее близкими датами приводить к одной единой партии и такие остатки с унифицированной партией размещать компактно вместе в одной ячейке, или в нескольких, если места в одной не будет хватать на размещение всего количества остатков. ![]() Это позволяет значительно сократить занимаемые складские площади, которые будут использоваться под новый размещаемый товар. В ситуации с перегрузкой складских мощностей такая мера является крайне необходимой, в противном случае свободного места под размещение нового товара может попросту не хватить, что приведет к стопору складских процессов размещения и подпитки. Раньше до внедрения WMS-системы такую операцию выполняли вручную, что было не эффективно, так как процесс поиска подходящих остатков в ячейках был достаточно долгим. Сейчас с внедрением WMS-системы решили процесс автоматизировать, ускорить и сделать его интеллектуальным. Процесс решения такой задачи разбивается на 2 этапа:
В текущей статье мы остановимся на первом этапе алгоритма, а освещение второго этапа оставим для следующей статьи. Поиск математической модели задачи Перед тем как садиться писать код и изобретать свой велосипед, мы решили подойти к такой задаче научно, а именно: сформулировать ее математически, свести к известной задаче дискретной оптимизации и использовать эффективные существующие алгоритмы для ее решения или взять эти существующие алгоритмы за основу и модифицировать их под специфику решаемой практической задачи. ![]() Допустим у нас константа разницы дней партий равна 20 дней. Граф ![]() Имеется конечное множество Подробный разбор этой задачи можно найти здесь и здесь. Другие варианты практического применения задачи о покрытии и её модификаций можно найти здесь. Алгоритм решения задачи С математической моделью решаемой задачи определились. Теперь приступим к рассмотрению алгоритма для ее решения. Подмножества
Логика работы процедуры формирования семейства множеств ![]() В такой процедуре необязательно для каждого Задача о покрытии множества является
Жадный алгоритм выбирает множества руководствуясь следующим правилом: на каждом этапе выбирается множество, покрывающее максимальное число ещё не покрытых элементов. Подробное описание алгоритма и его псевдокод можно найти здесь. Сравнение точности такого жадного алгоритма на тестовых данных решаемой задачи с другими известными алгоритмами, такими как вероятностный жадный алгоритм, алгоритм муравьиной колонии и т.д., не производилось. Результаты сравнения таких алгоритмов на сгенерированных случайных данных можно найти в работе. Реализация и внедрение алгоритма Такой алгоритм был реализован на языке 1С и был включен во внешнюю обработку под названием «Сжатие остатков», которая была подключена к WMS-системе. Мы не стали реализовывать алгоритм на языке С++ и использовать его из внешней Native компоненты, что было бы правильней, так как скорость работы кода на C++ в разы и на некоторых примерах даже в десятки раз превосходит скорость работы аналогичного кода на 1С. На языке 1С алгоритм был реализован для экономии времени на разработку и простоты отладки на рабочей базе заказчика. Результат работы алгоритма представлен на рисунке 5. ![]() На рисунке 5 видно, что на указанном складе текущие остатки товаров в ячейках хранения разбились на кластеры, внутри которых даты партий товаров отличаются между собой не более чем на 30 дней. Так как заказчик производит и хранит на складе металлические шаровые краны, у которых срок годности исчисляется годами, то такой разницей дат можно пренебречь. Отметим, что в настоящее время такая обработка используется в продакшене систематически, и операторы WMS подтверждают хорошее качество кластеризации партий. Выводы и продолжение Главный опыт, который мы получили от решения такой практической задачи – это подтверждение эффективности использования парадигмы: мат. формулировка задачи Источник: habr.com ![]() Комментарии: |
||||||