Сферические коды: Классические задачи о контактных (поцелуйных) числах |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-07-19 13:26 Лекция прочитана 13 ноября 2006 года в Екатеринбурге в рамках фестиваля «Дни науки в Екатеринбурге», проведенного фондом Дмитрия Зимина «Династия». Александр Григорьевич Бабенко Доктор физико-математических наук, старший научный сотрудник Института математики и механики УрО РАН. Специалист по теории приближения и комбинаторной геометрии. Получил ряд результатов по экстремальным свойствам полиномов, приближению функций одной и нескольких переменных на многообразиях, свойствам некомпактных множеств банаховых пространств. Одним из последних его результатов является точное неравенство Джексона-Стечкина между наилучшим среднеквадратичным приближением произвольной функции на многомерной евклидовой сфере алгебраическими многочленами и ее усредненным модулем непрерывности вещественного порядка большего или равного единицы. Эта тематика тесно примыкает к вопросам об оптимальных упаковках и покрытиях сферы. В этой области им совместно с В. В. Арестовым найдены точные решения прямой и обратной задачи Дельсарта в нескольких важных случаях. Источник: elementy.ru Комментарии: |
|