Распознавание эмоций с помощью сверточной нейронной сети |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-07-26 22:29 реализация нейронной сети, распознавание образов, искусственный интеллект Распознавание эмоций всегда было захватывающей задачей для ученых. В последнее время я работаю над экспериментальным SER-проектом (Speech Emotion Recognition), чтобы понять потенциал этой технологии – для этого я отобрал наиболее популярные репозитории на Github и сделал их основой моего проекта. Прежде чем мы начнем разбираться в проекте, неплохо будет вспомнить, какие узкие места есть у SER. Главные препятствия
Описание проекта Использование сверточной нейронной сети для распознавания эмоций в аудиозаписях. И да, владелец репозитория не ссылался ни на какие источники. Описание данных Есть два датасета, которые использовались в репозиториях RAVDESS и SAVEE, я только лишь адаптировал RAVDESS в своей модели. В контекста RAVDESS есть два типа данных: речь (speech) и песня (song).
Разбивка по эмоциям: Диаграмма распределения эмоций: Извлечение признаков Когда мы работаем с задачами распознавания речи, мел-кепстральные коэффициенты (MFCCs) – это передовая технология, несмотря на то, что она появилась в 80-х. Цитата из туториала по MFCC: Эта форма определяет, каков звук на выходе. Если мы можем точно обозначить форму, она даст нам точное представление прозвучавшей фонемы. Форма речевого тракта проявляет себя в огибающей короткого спектра, и работы MFCC – точно отобразить эту огибающую. Форма сигнала Спектрограмма Мы используем MFCC как входной признак. Если вам интересно разобраться подробнее, что такое MFCC, то этот туториал – для вас. Загрузку данных и их конвертацию в формат MFCC можно легко сделать с помощью Python-пакета librosa. Архитектура модели по умолчанию Автор разработал CNN-модель с помощь пакет Keras, создав 7 слоев – шесть Con1D слоев и один слой плотности (Dense).
Автор закомментировал слои 4 и 5 в последнем релизе (18 сентября 2018 года) и итоговый размер файла этой модели не подходит под предоставленную сеть, поэтому я не смогу добиться такого же результат по точности – 72%. Модель просто натренирована с параметрами batch_size=16 и epochs=700 , без какого-либо графика обучения и пр.
Здесь categorical_crossentropy это функция потерь, а мера оценки – точность.Мой эксперимент Разведочный анализ данных В датасете RAVDESS каждый актер проявляет 8 эмоций, проговаривая и пропевая 2 предложения по 2 раза каждое. В итоге с каждого актера получается 4 примера каждой эмоции за исключением вышеупомянутых нейтральной эмоции, отвращения и удивления. Каждое аудио длится примерно 4 секунды, в первой и последней секундах чаще всего тишина. Наблюдение После того как я выбрал датасет из 1 актера и 1 актрисы, а затем прослушал все их записи, я понял, что мужчины и женщины выражают свои эмоции по-разному. Например:
Повторение эксперимента Автор убрал классы neutral, disgust и surprised, чтобы сделать 10-классовое распознавание датасета RAVDESS. Пытаясь повторить опыт автора, я получил такой результат: Однако я выяснил, что имеет место утечка данных, когда датасет для валидации идентичен тестовому датасету. Поэтому я повторил разделение данных, изолировав датасеты двух актеров и двух актрис, чтобы они не были видны во время теста:
Я заново обучил модель и вот результат: Тест производительности Из графика Train Valid Gross видно, что не происходит схождение для выбранных 10 классов. Поэтому я решил понизить сложность модели и оставить только мужские эмоции. Я изолировал двух актеров в рамках test set, а остальных поместил в train/valid set, соотношение 8:2. Это гарантирует, что в датасете не будет дисбаланса. Затем я тренировал мужские и женские данные отдельно, чтобы провести тест.
Опорная линия: мужчины Женский датасет
Опорная линия: женщины Как можно заметить, матрицы ошибок отличаются. Мужчины: злость (Angry) и радость (Happy) – основные предугаданные классы в модели, но они не похожи. Женщины: расстройство (Sad) и радость (Happy) – основыне предугаданные классы в модели; злость (Angry) и радость (Happy) легко спутать. Вспоминая наблюдения из Разведочного анализа данных, я подозреваю, что женские злость (Angry) и радость (Happy) похожи до степени смешения, потому что их способ выражения заключается просто в повышении голоса. Вдобавок ко всему, мне интересно, что если я еще больше упрощу модель, остави только классы Positive, Neutral и Negative. Или только Positive и Negative. Короче, я сгруппировал эмоции в 2 и 3 класса соответственно. 2 класса:
3 класса:
До начала эксперимента я настроил архитектуру модели с помощью мужских данных, сделав 5-классовое распознавание.
Я добавил 2 слоя Conv1D, один слой MaxPooling1D и 2 слоя BarchNormalization; также я изменил значение отсева на 0.25. Наконец, я изменил оптимизатор на SGD со скоростью обучения 0.0001.
Для тренировки модели я применил уменьшение «плато обучения» и сохранил только лучшую модель с минимальным значением val_loss . И вот каковы результаты для разных целевых классов.Производительность новой модели Мужчины, 5 классов Женщины, 5 классовМужчины, 2 класса Мужчины, 3 класса Увеличение (аугментация) Когда я усилил архитектуру модели, оптимизатор и скорость обучения, выяснилось, что модель по-прежнему не сходится в режиме тренировки. Я предположил, что это проблема количества данных, так как у нас имеется только 800 семплов. Это привело меня к методам увеличения аудио, в итоге я увеличил датасеты ровно вдвое. Давайт взглянем на эти методы. Мужчины, 5 классов Динамическое увеличение значений
Настройка высоты звука
Смещение
Добавление белого шума
Заметно, что аугментация сильно повышает точность, до 70+% в общем случае. Особенно в случае с добавлением белого, которое повышает точность до 87,19% – однако тестовая точность и F1-мера падают более чем на 5%. И тут мне ко пришла идея комбинировать несколько методов аугментации для лучшего результата. Объединяем несколько методов Белый шум + смещение Тестируем аугментацию на мужчинах Мужчины, 2 класса Белый шум + смещение Только для позитивных семплов, так как 2-классовый сет дисбалансированный (в сторону негативных семплов). Настройка высоты звука + белый шум Для всех семплов Настройка высоты звука + белый шум Только для позитивных семплов Заключение В конце концов, я смог поэкспериментировать только с мужским датасетом. Я заново разделил данные так, чтобы избежать дисбаланса и, как следствие, утечки данных. Я настроил модель на эксперименты с мужскими голосами, так как я хотел максимально упростить модель для начала. Также я провел тесты, используя разные методы аугментации; добавление белого шума и смещение хорошо зарекомендовали себя на дисбалансированных данных. Выводы
Дальнейшее улучшение
Источник: habr.com Комментарии: |
|