Осваиваем компьютерное зрение — 8 основных шагов

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Для тебя уже не является новостью тот факт, что все на себе попробовали маски старения через приложение Face App. В свою очередь для компьютерного зрения есть задачи и поинтереснее этой. Ниже представлю 8 шагов, которые помогут освоить принципы компьютерного зрения.
image
Прежде, чем начать с этапов давайте поймём, какие задачи мы с вами сможем решать с помощью компьютерного зрения. Примеры задач могут быть следующими:

Минимальные знания, необходимые для освоения компьютерного зрения


Итак, теперь давайте приступим непосредственно к этапам.

Шаг 1 — Базовые методики работы с изображениями

Этот шаг посвящен техническим основам.

Посмотрите — отличный YouTube-плейлист «Древние секреты компьютерного зрения» от Joseph Redmon.

Прочтите — третью главу книги Ричарда Шелиски «Компьютерное зрение: Алгоритмы и приложения».
image
Закрепите знания — попробуйте себя в преобразовании изображений с помощью OpenCV. На сайте есть много пошаговых электронных пособий, руководствуясь которыми можно во всём разобраться.

Шаг 2 — Отслеживание движения и анализ оптического потока

Оптический поток — это последовательность изображений объектов, получаемая в результате перемещения наблюдателя или предметов относительно сцены. Пройдите курс — курс по компьютерному зрению на Udacity, в особенности урок 6. Посмотрите — 8-ое видео в YouTube-списке и лекцию об оптическом потоке и трекинге.

Прочтите — разделы 10.5 и 8.4 учебника Шелиски.
image
В качестве учебного проекта разберитесь с тем, как с помощью OpenCV отслеживать объект в видеофрейме.

Шаг 3 — Базовая сегментация

В компьютерном зрении, сегментация — это процесс разделения цифрового изображения на несколько сегментов (суперпиксели). Цель сегментации заключается в упрощении и/или изменении представления изображения, чтобы его было проще и легче анализировать. Так, преобразование Хафа позволяет найти круги и линии. Посмотрите эти видео:

Ознакомьтесь — отличный проект подобные задачи которого чрезвычайно важны для компьютерного зрения самоуправляемых электромобилей.

Шаг 4 — Фитинг

Для различных данных требуется специфичный подход к фитингу и свои алгоритмы.

Посмотрите видео:

Прочтите — разделы 4.3.2 и 5.1.1 учебника Шелиски. В качестве задания для самостоятельной работы проанализируйте проблему определения координаты места схождения линий на горизонте перспективы.

Шаг 5 — Совмещение изображений, полученных с разных точек осмотра

Посмотрите Youtube-плейлист

Прочтите — сопроводительное письмо. Для проекта можно взять собственные данные. Например, сфотографировать с разных сторон что-то из мебели и сделать в OpenCV из альбома плоских изображений 3D-объект.

Шаг 6 — Трёхмерные сцены

Умея создавать 3D-объекты из плоских изображений, можно попробовать создать и трёхмерную реальность.

Пройдите — курс по стереозрению и трекингу Посмотрите видео:

В качестве проекта попытайтесь реконструировать сцену или сделать трекинг объекта в трехмерном пространстве.

Шаг 7 — Распознавание объектов и классификация изображений

В качестве фреймворка для глубокого обучения удобно использовать TensorFlow. Это один из наиболее популярных фреймворков, поэтому вы без труда отыщете достаточно примеров. Для начала работы с изображениями в TensorFlow пройдите этот туториал. Далее, пользуясь ссылками, рассмотрите следующие темы:


В качестве проекта создайте в TensorFlow нейросеть, определяющую по изображению марку автомобиля или породу собаки.

Шаг 8 — Современное глубокое обучение

Прочитайте — лекции Стенфордского курса Посмотрите видео:

На этом наши шаги в изучении компьютерного зрения подошли к концу. Надеюсь вы узнали для себя что-нибудь новое. Как принято на Хабре, понравился пост — поставь плюс. Не забудьте поделиться с коллегами. Также, если у вас есть то, чем вы можете поделиться сами — пишите в комментариях. Больше информации о машинном обучении и Data Science на Хабре и в телеграм-канале Нейрон (@neurondata). Всем знаний!

Источник: habr.com

Комментарии: