Искусственный интеллект — это способность цифрового компьютера или управляемого компьютером робота выполнять задачи, обычно связанные с разумными существами. Термин часто применяется к проекту развития систем, наделенных интеллектуальными процессами, характерными для человека, такими как способность рассуждать, обобщать или учиться на прошлом опыте. Кроме того, определение понятия ИИ (искусственный интеллект) сводится к описанию комплекса родственных технологий и процессов, таких как, например, машинное обучение, виртуальные агенты и экспертные системы. Говоря простыми словами, ИИ — это грубое отображение нейронов в мозге. Сигналы передаются от нейрона к нейрону и, наконец, выводятся — получается числовой, категориальный или генеративный результат. Это можно проиллюстрировать на таком примере. если система делает снимок кошки и обучена распознавать, кошка это или нет, первый слой может идентифицировать общие градиенты, которые определяют общую форму кошки. Следующий слой может идентифицировать более крупные объекты, такие как уши и рот. Третий слой определяет более мелкие объекты (например, усы). Наконец, основываясь на этой информации, программа выведет «да» или «нет», чтобы сказать, является ли это кошкой или нет. Программисту не нужно «говорить» нейронам, что это те функции, которые они должны искать. ИИ изучил их сам по себе, тренируясь на многих изображениях (как с кошками, так и без кошек).
Что такое искусственный интеллект?
Описание искусственного нейрона
Искусственный нейрон — это математическая функция, задуманная как модель биологических нейронов, нейронной сети. Искусственные нейроны — элементарные единицы в искусственных нейросетях. Искусственный нейрон получает один или несколько входов и суммирует их, чтобы произвести выход или активацию, представляющую потенциал действия нейрона, который передается вдоль его аксона. Обычно каждый вход анализируется отдельно, и сумма передается через нелинейную функцию, известную как функция активации, или передаточная функция.
Когда началось исследование ИИ?
В 1935 году британский исследователь А.М. Тьюринг описал абстрактную вычислительную машину, которая состоит из безграничной памяти и сканера, перемещающегося вперед и назад по памяти, символ за символом. Сканер считывает то, что он находит, записывая дальнейшие символы. Действия сканера диктуются программой инструкций, которая также хранится в памяти в виде символов. Самая ранняя успешная программа ИИ была написана в 1951 году Кристофером Стрейчи. В 1952 году эта программа могла играть с человеком в шашки, удивляя всех своими способностями предсказывать ходы. В 1953 году Тьюринг опубликовал классическую раннюю статью о шахматном программировании.
Отличие искусственного интеллекта от естественного
Интеллект можно определить как общую умственную способность к рассуждению, решению проблем и обучению. В силу своей общей природы интеллект интегрирует когнитивные функции, такие как восприятие, внимание, память, язык или планирование. естественный интеллект отличает осознанное отношение к миру. Мышление человека всегда эмоционально окрашено, и его нельзя отделить от телесности. Кроме того, человек — существо социальное, поэтому на мышление всегда влияет социум. ИИ не имеет отношения к эмоциональной сфере и социально не ориентирован.
Как сравнить человеческий и компьютерный интеллекты?
Сравнить мышление человека с искусственным интеллектом можно исходя из нескольких общих параметров организации мозга и машины. Деятельность компьютера, как и мозга, включает четыре этапа: кодирование, хранение, анализ данных и выдачу результата. Кроме того, мозг человека и ИИ могут самообучаться в зависимости от данных, полученных из окружающей среды. Также человеческий мозг и машинный интеллект решают проблемы (или задачи), используя определенные алгоритмы.
У компьютерных программ есть IQ?
Нет. Показатель IQ связан с развитием интеллекта человека в зависимости от возраста. ИИ в
Символьный подход
Символьный подход к ИИ — совокупность всех методов исследования искусственного интеллекта, основанных на высокоуровневых символических (читаемых человеком) представлениях о задачах, логике и поиске. Символьный подход широко применялся в исследованиях ИИ в 1950–80-х годах. Одной из популярных форм символьного подхода являются экспертные системы, использующие сочетание определенных правил производства. Производственные правила связывают символы в логические связи, которые подобны алгоритму If-Then. Экспертная система обрабатывает правила, чтобы сделать выводы и определить, какая дополнительная информация ей нужна, то есть какие вопросы задавать, используя удобочитаемые символы.
Логический подход
Термин «логический подход» предполагает апеллирование к логике, размышлениям, решению задач с помощью логических шагов. Логики еще в XIX веке разработали точные обозначения для всех видов объектов в мире и отношений между ними. К 1965 году существовали программы, которые могли решить любую логическую задачу (пик популярности данного подхода пришелся на конец 1950–70-х годов). Сторонники логического подхода в рамках логического искусственного интеллекта надеялись выстроить на таких программах (в частности, записанных на языке Prolog) интеллектуальные системы. Однако у такого подхода два ограничения. Во-первых, нелегко взять неформальное знание и изложить его в формальных терминах, которые требуются для обработки ИИ. Во-вторых, есть большая разница между решением проблемы в теории и ее решением на практике. Даже проблемы с несколькими сотнями фактов могут исчерпать вычислительные ресурсы любого компьютера, если у него нет каких-либо указаний относительно того, какие рассуждения надо использовать в первую очередь.
Агентно-ориентированный подход
Агент — это то, что действует (от лат. agere, «делать»). Конечно, все компьютерные программы что-то делают, но ожидается, что компьютерные агенты будут делать больше: работать автономно, воспринимать сигналы окружающей среды (с помощью специальных датчиков), адаптироваться к изменениям, создавать цели и выполнять их. Рациональный агент — это тот, кто действует так, чтобы достичь наилучшего ожидаемого результата.
Гибридный подход
Предполагается, что этот подход, который стал популярным в конце 80-х, работает наиболее эффективно, так как представляет собой сочетание символьных и нейронных моделей. Гибридный подход увеличивает когнитивные и вычислительные возможности машины.
Рынок технологий искусственного интеллекта
Ожидается, что рынок к 2025 году вырастет до 190,61 млрд долларов, при ежегодном темпе прироста — 36,62%. На рост рынка влияют такие факторы, как внедрение облачных приложений и сервисов, появление больших массивов данных и активный спрос на интеллектуальных виртуальных помощников. Однако экспертов, разрабатывающих и внедряющих технологии ИИ, пока немного, и это сдерживает рост рынка. Системам, созданным на основе ИИ, необходима интеграция и техническая поддержка при обслуживании.
В России
В конце 2018 года в России запустили серию серверов «Эльбрус-804», показывающих высокую производительность. Каждый из компьютеров оснащен четырьмя восьмиядерными процессорами. С помощью данных устройств можно выстроить вычислительные кластеры, они позволяют работать с приложениями и базами данных.
Мировой рынок
Драйверами и лидерами рынка являются две корпорации — Intel и AMD, производители самых мощных процессоров. Intel традиционно концентрируется на выпуске машин с более высокой тактовой частотой, AMD ориентирована на постоянное увеличение числа ядер и обеспечение многопоточной производительности.
Национальная концепция развития
Национальные стратегии развития ИИ уже утвердили три десятка стран. В октябре 2019 года проект Национальной стратегии развития ИИ должен быть принят в России. Предполагается, что в Москве будет введен правовой режим, облегчающий разработку и внедрение технологий ИИ.
Исследования в сфере ИИ
Вопросы, что такое искусственный интеллект и как он работает, волнуют ученых разных стран уже не одно десятилетие. Госбюджет США ежегодно направляет 200 млн долларов на исследования. В России за 10 лет — с 2007-го по 2017-й — было выделено около 23 млрд рублей. Разделы по поддержке исследований в сфере ИИ станут важной частью концепции национальной стратегии. В скором времени в России откроются новые научные центры, а также будет продолжена разработка инновационного ПО для ИИ.
Стандартизация в области ИИ
Нормы и правила в области ИИ в России находятся в процессе постоянной доработки. Предполагается, что в конце 2019 — начале 2020 года будут утверждены национальные стандарты, которые сейчас разрабатывают лидеры рынка. Параллельно формируется План национальной стандартизации на 2020 год и далее. В мире работает стандарт «Искусственный интеллект. Концепция и терминология», и в 2019 году эксперты начали разрабатывать его русифицированную версию. Документ должен быть утвержден в 2021 году.
Влияние искусственного интеллекта
Внедрение ИИ неразрывно связано с
На экономику и бизнес
Проникновение технологии ИИ во все сферы экономики увеличит к 2030 году объем глобального рынка услуг и товаров на 15,7 трлн долларов. США и Китай пока лидеры с точки зрения всевозможных проектов в сфере ИИ. Развитые страны — Германия, Япония, Канада, Сингапур — также стремятся реализовать все возможности. Многие страны, экономика которых растет умеренными темпами, такие как Италия, Индия, Малайзия, развивают сильные стороны в конкретных областях применения ИИ.
На рынок труда
Глобальное влияние ИИ на рынок труда будет идти по двум сценариям. Во-первых, распространение некоторых технологий будет приводить к увольнению большого количества людей, так как выполнение многих задач возьмут на себя компьютеры. Во-вторых, в связи с развитием технического прогресса специалисты в сфере ИИ будут очень востребованы во многих отраслях.
Предвзятость ИИ
Предвзятость системы ИИ, вероятно, станет все более распространенной проблемой, поскольку искусственный интеллект выходит из лабораторий в реальный мир. Исследователи опасаются, что без надлежащей подготовки по оценке данных и выявлению потенциала предвзятости в данных уязвимые группы общества могут пострадать или их права будут ущемлены. До сих пор у исследователей нет данных, не будут ли угрожать человечеству системы, построенные на основе машинного обучения.
Сферы применения
Искусственный интеллект и его области применения претерпевают трансформацию. Определение Weak AI («слабый ИИ») используется, когда речь идет о реализации узких задач в медицинской диагностике, электронных торговых платформах, управлении роботами. Тогда как Strong AI («сильный ИИ») исследователи определяют как интеллект, перед которым ставятся глобальные задачи, как если бы их ставили перед человеком.
В образовании
Многие школы включают в образовательный курс информатики ознакомительные уроки по ИИ, а университеты широко применяют технологии больших данных. Некоторые программы контролируют поведение учащихся, оценивают тесты и эссе, распознают ошибки в произношении слов и предлагают варианты исправления.
Также существуют онлайн-курсы по искусственному интеллекту. Например, у образовательного портала GeekBrains.
В бизнесе и торговле
В ближайшие пять лет у ведущих ретейлеров появятся мобильные приложения, которые будут работать с цифровыми помощниками, такими как Siri, чтобы упростить процесс совершения покупок. ИИ позволяет зарабатывать огромные суммы в интернете. Один из примеров — Amazon, который постоянно анализирует потребительское поведение и совершенствует алгоритмы.
В электроэнергетике
ИИ помогает прогнозировать генерацию и спрос на энергоресурсы, снижать потери, предотвращает кражи ресурсов. В электроэнергетике использование ИИ при анализе статистических данных помогает выбрать наиболее выгодного поставщика или автоматизировать обслуживание клиентов.
В производственной сфере
Согласно опросу McKinsey, проведенному среди 1300 руководителей, 20% предприятий уже применяют ИИ. Недавно компания «Моссельпром» внедрила ИИ у себя на производстве в цеху упаковки. Используется способность ИИ к распознаванию изображения. Камера фиксирует все действия работника, сканируя штрих-код, нанесенный на одежду, и отправляет данные в компьютер. Количество совершенных операций напрямую влияет на оплату труда сотрудника.
В банковской сфере
Потребность в надежной обработке данных, развитие мобильных технологий, доступность информации и распространение программного обеспечения с открытым исходным кодом делают ИИ востребованной технологией в банковском секторе. Все больше банков привлекают заемные средства с помощью компаний-разработчиков мобильных приложений. Новые технологии улучшают обслуживание клиентов, и, как предсказывают аналитики, уже через пять лет ИИ в банках будет принимать большинство решений самостоятельно.
На транспорте
Развитие технологий ИИ — драйвер транспортной отрасли. Мониторинг состояния дорог, обнаружение пешеходов или объектов в неположенных местах, автономное вождение, облачные сервисы в автомобилестроении — лишь немногие примеры применения ИИ на транспорте.
В логистике
Возможности ИИ позволяют компаниям более эффективно прогнозировать спрос и выстраивать цепи поставок с минимальными затратами. ИИ помогает сократить количество используемых транспортных средств, необходимых для перевозки, оптимизировать время доставки, снизить эксплуатационные расходы транспорта и складских помещений.
На рынке предметов и услуг роскоши
Люксовые бренды также обратились к цифровым технологиям, чтобы анализировать потребности клиентов. Одна из задач, которая ставится перед разработчиками в этом сегменте, — управление эмоциями клиентов и влияние на них. Dior уже адаптирует ИИ для управления взаимодействием клиента и бренда с помощью чат-ботов. Люксовые бренды будут конкурировать в будущем, и решающим будет уровень персонализации, которого они смогут достичь с помощью ИИ.
В госуправлении
Государственные аппараты многих стран пока не готовы к вызовам, которые спрятаны в технологиях ИИ. Согласно прогнозам экспертов, многие из существующих правительственных структур и процессов, которые развивались в течение последних нескольких столетий, вероятно, станут неактуальными в ближайшем будущем.
В судебной системе
Разработки в области искусственного интеллекта помогут кардинально изменить судебную систему, сделать ее более справедливой и свободной от коррупции. Одними из первых ИИ в судебной системе стал применять Китай. Можно предположить, что роботы-судьи со временем смогут оперировать большими данными из хранилищ государственных служб. Машинный интеллект анализирует огромное количество данных, и он не испытывает эмоции, как
В спорте
Применение ИИ в спорте стало обычным явлением в последние годы. Спортивные команды (бейсбол, футбол и т .д.) анализируют индивидуальные данные о производительности игроков, учитывая разные факторы при подборе. ИИ может предсказать будущий потенциал игроков, анализируя технику игры, физическое состояние и другие данные, а также оценить их рыночную стоимость.
В медицине здравоохранении
Эта сфера применения стремительно развивается. ИИ используется в диагностике заболеваний, клинических исследованиях, при разработке лекарств и при создании медицинских страховок. Кроме того, сейчас наблюдается бум инвестирования в многочисленные медицинские приложения и устройства.
В развитии культуры
Алгоритмы ИИ начинают генерировать художественные произведения, которые сложно отличить от созданных человеком. ИИ предлагает людям творческих профессий множество инструментов для воплощения замыслов. Именно сейчас меняется понимание роли художника в широком смысле, так как ИИ дает массу новых методов, но и ставит перед человечеством много новых вопросов.
Живопись
Искусство издавна считалось исключительной сферой человеческого творчества. Но оказалось, что машины могут сделать гораздо больше в творческой сфере, чем люди могут себе представить. В октябре 2018 года Christie’s продал первую картину, созданную ИИ, за 432 500 долларов. Использовался алгоритм генеративной состязательной сети, который анализировал 15 000 портретов, созданных между XV и XX веком.
Музыка
Разработано несколько музыкальных программ, которые используют ИИ для создания музыки. Как и в других областях, ИИ в этом случае также имитирует умственную задачу. Заметной особенностью является способность алгоритма ИИ учиться на основе полученной информации, такой как технология компьютерного сопровождения, которая способна слушать и следовать за
Фотография
ИИ быстро меняет наше представление о фотографии. Всего через пару лет большинство достижений в этой сфере будут ориентированы на ИИ, а не на оптику или сенсоры, как раньше. Прогресс в технологии фотографии впервые не будет связан с физикой и создаст совершенно новый способ фотомышления. Уже сейчас нейросеть распознает малейшие изменения при моделировании лиц в фоторедакторах.
Видео: замена лиц
В 2015 году Facebook начала тестировать на сайте технологию DeepFace. В 2017 Reddit-юзер DeepFakes придумал алгоритм, позволяющий создавать реалистичные видео с заменой лица, используя нейросети и машинное обучение.
СМИ и литература
В 2016 году ИИ Google, проанализировав 11 тысяч неизданных книг, начал писать свои первые литературные произведения. Исследователи Facebook AI Research в 2017 году придумали систему нейросетей, которая умеет писать стихи на любую тему. В ноябре 2015 года направление подготовки автоматических текстов открыла российская компания «Яндекс».
Распознавание лиц
Технология распознавания лиц применяется как для фото-, так и видеопотоков. Нейронные сети выстраивают векторный, или «цифровой», шаблон лица, далее происходит сравнение этих шаблонов внутри системы. Она находит опорные точки на лице, которые определяют индивидуальные характеристики. Алгоритм вычисления характеристик различен для каждой из систем и является главным секретом разработчиков.
Для дальнейшего развития и применения ИИ необходимо обучать прежде всего человека
Сергей Ширкин
Декан факультета Искусственного интеллекта GeekUniversity
Технологии искусственного интеллекта в таком виде, в каком они применяются сейчас, существуют около 5–10 лет, но для того, чтобы их применить, как это ни странно, требуется большое количество людей. Соответственно, основные расходы в сфере искусственного интеллекта — это расходы на специалистов. Тем более что почти все базовые технологии искусственного интеллекта (библиотеки, фреймворки, алгоритмы) бесплатны и находятся в открытом доступе. Одно время найти специалистов по машинному обучению было практически невозможным делом. Но сейчас, во многом благодаря развитию MOOC (англ. Massive Open Online Course, массовый открытый онлайн-курс) их становится больше. Высшие образовательные учреждения тоже поставляют специалистов, но и им часто приходится доучиваться на
Сейчас искусственный интеллект вполне может распознать, что человек задумал сменить работу, и может предложить ему соответствующие онлайн-курсы, многие из которых можно проходить, имея в наличии лишь смартфон. А это означает, что заниматься можно даже находясь в пути — например, по дороге на работу. Одним из первых таких проектов был онлайн-ресурс Coursera, но позже появилось много подобных образовательных проектов, каждый из которых занимает определенную нишу в
Нужно понимать, что ИИ, как и любая программа, — это прежде всего код, то есть определенным образом оформленный текст. Этот код нуждается в развитии, обслуживании и совершенствовании. К сожалению, само собой это не происходит, без программиста код не может «ожить». Поэтому все страхи о всемогуществе ИИ не имеют оснований. Программы создаются под строго определенные задачи, они не обладают чувствами и устремлениями подобно человеку, они не совершают действий, которые в них не заложил программист.
Можно сказать, что в наше время ИИ обладает лишь отдельными навыками человека, хотя и может в быстроте их применения опережать среднестатистического человека. Правда, на выработку каждого такого навыка тратятся многочасовые усилия тысяч программистов. Самое большое, на что пока способен ИИ — автоматизировать некоторые физические и умственные операции, освобождая тем самым людей от рутины.
Несет ли применение ИИ какие-то риски? Скорее сейчас существует риск не разглядеть возможность применения технологий искусственного интеллекта. Многие компании осознают это и пытаются развиваться сразу в нескольких направлениях в расчете на то, что какое-то из них может «выстрелить». Показателен пример интернет-магазинов: сейчас на плаву остались только те, кто осознал необходимость применения ИИ, когда это еще не было в тренде, хотя вполне можно было «сэкономить» и не приглашать непонятно зачем нужных математиков-программистов.
Перспектива развития искусственного интеллекта
Компьютеры теперь могут делать многое из того, что раньше могли делать только люди: играть в шахматы, распознавать буквы алфавита, проверять орфографию, грамматику, распознавать лица, диктовать, говорить, выигрывать игровые шоу и многое другое. Но скептики упорствуют. Как только удается автоматизировать очередную человеческую способность, скептики говорят, что это лишь еще одна компьютерная программа, а не пример самообучающегося ИИ. Технологии ИИ только находят широкое применение и имеют огромный потенциал роста во всех сферах. Со временем человечество будет создавать все более мощные компьютеры, которые будут все более совершенствоваться в развитии ИИ.
Является ли целью ИИ поместить человеческий разум в компьютер?
Существует только приблизительное понимание того, как работает человеческий мозг. Пока далеко не все свойства разума возможно имитировать с помощью ИИ.
Сможет ли ИИ достичь человеческого уровня интеллекта?
Ученые стремятся к тому, чтобы ИИ мог решать еще больше разнообразных задач. Но о достижении уровня человеческого интеллекта говорить преждевременно, так как мышление не сводится только к одним алгоритмам.
Когда искусственный интеллект сможет достичь уровня человеческого мышления?
На данном этапе накопления и анализа информации, который сейчас достигнут человечеством, ИИ далек от человеческого мышления. Однако в будущем могут возникнуть прорывные идеи, которые повлияют на резкий скачок в развитии ИИ.
Может ли компьютер стать интеллектуальной машиной?
Часть любой сложной машины — это компьютерная система, и тут возможно говорить только об интеллектуальных компьютерных системах. Сам компьютер не обладает интеллектом.
Есть ли связь между скоростью и развитием интеллекта у компьютеров?
Нет, скорость отвечает только за некоторые свойства интеллекта. Самой по себе скорости обработки и анализа информации недостаточно, чтобы появился интеллект.
Возможно ли создать детскую машину, которая могла бы развиваться с помощью чтения и самообучения?
Это обсуждается исследователями уже почти сто лет. Вероятно, идея когда-нибудь будет реализована. На сегодня программы ИИ не обрабатывают и не используют столько информации, сколько могут делать дети.
Как связаны с ИИ теория вычислимости и вычислительная сложность?
Теория вычислительной сложности фокусируется на классификации вычислительных задач в соответствии с присущей им сложностью и связывании этих классов друг с другом. Вычислительная задача — это задача, решаемая компьютером. Задача вычисления разрешима механическим применением математических шагов, таких как алгоритм.
Заключение
Искусственный интеллект уже оказал огромное влияние на развитие нашего мира, что было невозможно предсказать еще столетие назад. «Умные» телефонные сети маршрутизируют звонки более эффективно, чем любой человек-оператор. Автомобили строятся на беспилотных заводах автоматизированными роботами. Искусственный интеллект интегрируется в самые обычные бытовые предметы, например в пылесос. Механизмы ИИ до конца не изучены, но эксперты прогнозируют, что развитие ИИ еще более приблизится к развитию человеческого мозга уже в ближайшие годы.