Введение в Scikit-learn |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-06-16 18:00 Библиотека Scikit-learn — самый распространенный выбор для решения задач классического машинного обучения. Она предоставляет широкий выбор алгоритмов обучения с учителем и без учителя. Обучение с учителем предполагает наличие размеченного датасета, в котором известно значение целевого признака. В то время как обучение без учителя не предполагает наличия разметки в датасете — требуется научиться извлекать полезную информацию из произвольных данных. Одно из основных преимуществ библиотеки состоит в том, что она работает на основе нескольких распространенных математических библиотек, и легко интегрирует их друг с другом. Еще одним преимуществом является широкое сообщество и подробная документация. Scikit-learn широко используется для промышленных систем, в которых применяются алгоритмы классического машинного обучения, для исследований, а так же для новичков, которые только делает первые шаги в области машинного обучения. Для своей работы, scikit-learn использует следующие популярные библиотеки:
Что содержит Scikit-learn В задачи библиотеки не входит загрузка, обработка, манипуляция данными и их визуализация. С этими задачами отлично справляются библиотеки Pandas и NumPy. Scikit-learn специализируется на алгоритмах машинного обучения для решения задач обучения с учителем: классификации (предсказание признака, множество допустимых значений которого ограничено) и регрессии (предсказание признака с вещественными значениями), а также для задач обучения без учителя: кластеризации (разбиение данных по классам, которые модель определит сама), понижения размерности (представление данных в пространстве меньшей размерности с минимальными потерями полезной информации) и детектирования аномалий. Библиотека реализует следующие основные методы:
Это — лишь базовый список. Помимо этого, Scikit-learn содержит функции для расчета значений метрик, выбора моделей, препроцессинга данных и другие. Пример применения Чтобы дать вам представление о том, как легко обучать и тестировать модель ML с помощью Scikit-Learn, вот пример того, как это сделать для классификатора дерева решений! Деревья решений для классификации и регрессии очень просты в использовании в Scikit-Learn. Сначала мы загрузим наш датасет, который фактически встроен в библиотеку. Затем мы инициализируем наше дерево решений для классификации. Обучение модели — это просто одна строчка .fit(X, Y), где X — обучающая выборка в формате массива NumPy, а Y — массив целевых значений, также в формате массива NumPy. import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier, plot_tree # Load data iris = load_iris() Scikit-Learn также позволяет нам визуализировать наше дерево. Для этого есть несколько настриваемых опций, которые помогут визуализировать узлы принятия решений и разбить изученную модель, что очень полезно для понимания того, как она работает. Ниже мы раскрасим узлы на основе имен признаков и отобразим информацию о классе и объектах каждого узла. plt.figure(figsize=((20,13))) clf = DecisionTreeClassifier() clf = clf.fit(iris.data, iris.target) plot_tree(clf, filled=True, feature_names=iris.feature_names, class_names=iris.target_names, rounded=True) plt.show() Каждый из параметров алгоритма интуитивно назван и доступно объяснен. Кроме того, разработчики также предлагают туториалы с примером кода о том, как обучать и применять модель, ее плюсы и минусы и практические советы по применению. Источник: neurohive.io Комментарии: |
|