Теорема Гёделя о неполноте. [Перевод] |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-06-29 18:33 Ещё в начале XX века Давид Гильберт провозгласил цель аксиоматизировать всю математику, и для завершения этой задачи оставалось доказать непротиворечивость и логическую полноту арифметики натуральных чисел. 7 сентября 1930 года в Кёнигсберге проходил научный конгресс по основаниям математики, и на этом конгрессе 24-летний Курт Гёдель впервые обнародовал две фундаментальные теоремы о неполноте, показавшие, что программа Гильберта не может быть реализована: при любом выборе аксиом арифметики существуют теоремы, которые невозможно ни доказать, ни опровергнуть простыми (финитными) средствами, предусмотренными Гильбертом, а финитное доказательство непротиворечивости арифметики невозможно. Это выступление не было заявлено заранее и произвело ошеломляющий эффект, Гёдель сразу стал всемирной знаменитостью, а программа Гильберта по формализации основ математики потребовала срочного пересмотра. 23 октября 1930 года результаты Гёделя были представлены Венской академии наук Хансом Ханом. Статья с обеими теоремами («О принципиально неразрешимых положениях в системе Principia Mathematica и родственных ей системах») была опубликована в научном ежемесячнике Monatshefte f?r Mathematik und Physik в 1931 году. Хотя доказательство второй теоремы Гёдель дал только в виде идеи, его результат было настолько ясен и неоспорим, что не вызвал сомнений ни у кого. Гильберт сразу признал ценность открытий Гёделя; первые полные доказательства обеих теорем были опубликованы в книге Гильберта и Бернайса «Основания математики» (1938). В предисловии ко второму тому авторы признали, что для достижения поставленной цели финитных методов недостаточно, и добавили в число логических средств трансфинитную индукцию; в 1936 году Герхард Генцен сумел доказать с помощью этой аксиомы непротиворечивость арифметики, однако логическая полнота так и осталась недостижимой. Специалисты дают самые разные, иногда даже полярные оценки исторической значимости теорем Гёделя. Часть учёных считает, что эти теоремы «перевернули» основания математики или даже всю теорию познания, и значение гениального открытия Гёделя будет постепенно открываться ещё долгое время. Другие же (например, Бертран Рассел) призывают не преувеличивать, поскольку теоремы опираются на финитный формализм Гильберта. Вопреки распространенному заблуждению, теоремы о неполноте Гёделя не предполагают, что некоторые истины так и останутся навеки непознанными. Кроме того, из этих теорем не следует, что человеческие способности к познанию так или иначе ограниченны. Нет, теоремы всего лишь показывают слабости и недостатки формальных систем. Рассмотрим, например, следующее доказательство непротиворечивости арифметики. Допустим, что аксиоматика Пеано для арифметики противоречива. Тогда из неё можно вывести любое утверждение, в том числе ложное. Однако все аксиомы Пеано очевидным образом истинны, а из истинных утверждений не могут следовать ложный вывод — получаем противоречие. Следовательно, арифметика непротиворечива. С точки зрения повседневной человеческой логики, это доказательство приемлемо и убедительно. Но оно не может быть записано по правилам теории доказательств Гильберта, поскольку в этих правилах семантика заменена на синтаксис, а истинность — на «выводимость». В любом случае теоремы Гёделя подняли философию математики на новый уровень. Комментарии: |
|