Локализация мобильных роботов | Кирилл Кринкин | Лекториум |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-06-15 18:09 Метод одновременной локализации и построения карты (SLAM от англ. simultaneous localization and mapping) — метод, используемый в мобильных автономных средствах для построения карты в неизвестном пространстве или для обновления карты в заранее известном пространстве с одновременным контролем текущего местоположения и пройденного пути. Популярные методы приближенного решения данной задачи включают в себя фильтр частиц и расширенный фильтр Калмана. Опубликованные подходы используются в самостоятельном вождении автомобилей, беспилотных летательных аппаратов, автономных подводных аппаратов, планетоходов, домашних роботов и даже внутри человеческого тела. Обзор основных алгоритмов этого метода представлен в лекции Кирилла Кринкина Комментарии: |
|