Как стать экспертом в Data Science: пошаговый план |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-06-27 20:30 Мало кто может предсказывать события до ста процентов верно. Но дата-сайнтисты научились. А мы нашли последние тренды Data Science и составили план для тех, кто хочет глубоко изучить эту область. Выбор языка Сейчас в науке о данных используются два основных языка: Python и R. Язык R применяется для сложных финансовых анализов и научных исследований, потому его глубокое изучение можно отложить на потом. На начальном этапе можно остановиться на изучении основ: Быстро разобраться в теории языка R поможет сайт Quick-R. Python популярен больше: на нём проще научиться писать код и для него написано множество пакетов визуализации данных, машинного обучения, обработки естественного языка и сложного анализа данных. Что важно освоить в Python: Чтобы освоить базовые понятия Python, у вас уйдёт примерно 4-6 недель при условии, что вы будете тратить на изучение 2-3 часа в день. Где можно освоить: в Skillfactory. Библиотеки для Python NumPy NumPy — библиотека научных вычислений. От неё зависит почти каждый пакет Python для Data Science или Machine Learning: SciPy (Scientific Python), Matplotlib, Scikit-learn. NumPy помогает выполнять математические и логические операции: например, в ней содержатся полезные функции для n-массивов и матриц. А ещё библиотека поддерживает многомерные массивы и высокоуровневые математические функции для работы с ними. Зачем нужно знать математику? Почему компьютер не может сам всё посчитать? Часто методы машинного обучения используют матрицы для хранения и обработки входных данных. Матрицы, векторные пространства и линейные уравнения — всё это линейная алгебра. Чтобы понимать, как работают методы машинного обучения, нужно хорошо знать математику. Поэтому будет лучше пройти весь курс алгебры целиком: самостоятельно или с наставниками. Кроме того, математика и математический анализ важны для оптимизации процессов. Зная их, проще улучшать быстроту и точность работы моделей машинного обучения. Что важно освоить: Где можно подтянуть знания по NumPy: официальная документация. Где можно подтянуть знания по алгебре: Calculus (глава 11), курс по математике для Data Science. Pandas Pandas — библиотека с открытым исходным кодом, построенная на NumPy. Она позволяет выполнять быстрый анализ, очистку и подготовку данных. Такой своеобразный Excel для Python. Что важно освоить: Где можно подтянуть знания по Pandas: Pydata. Базы данных и сбор информации Если вы уже знакомы с Python, Pandas и NumPy, можете приступать к изучению работы с базами данных и парсингу информации. SQL Несмотря на то, что NoSQL и Hadoop уже пустили корни в науку о данных, важно уметь писать и выполнять сложные запросы на SQL. Часто необработанные данные — от электронных медицинских карт до истории транзакций клиентов — находятся в организованных коллекциях таблиц, которые называются реляционными базами данных. Чтобы быть хорошим специалистом по данным, нужно знать, как обрабатывать и извлекать данные из этих баз данных. Нужно научиться: Хорошо структурированный курс по работе с SQL можно пройти здесь: SkillFactory. Парсинг информации Важно: Алгоритмы Быть программистом без знания алгоритмов страшно, а Data Scientist’ом — опасно. Так что если вы уже освоили Python, Pandas, NumPy, SQL и API, пора учиться применять эти технологии для исследований. Скорость работы хорошего специалиста часто зависит от трёх факторов: от поставленного вопроса, объёма данных и выбранного алгоритма. Потому на этом этапе важно понять алгоритмы и структуры данных Беллмана-Форда, Дейкстры, двоичного поиска (и двоичные деревья как инструмент), поиска в глубину и ширину. Подтянуть знания поможет Tproger (алгоритмы, структуры данных) и Khan Academy. Машинное обучение и нейронные сети Пора применять полученные навыки к решению реальных задач. До этого этапа важно знать математику: поиск, очистку и подготовку данных, построение моделей с точки зрения математики и статистики, их оптимизацию средствами матанализа — вот это всё. Реальные задачи чаще всего решаются с помощью серьёзных библиотек вроде TensorFlow и Keras. Нужно освоить: Дополнительно закрепить знания о машинном обучении можно здесь: Машинное обучение от Эндрю Ына. Заключение Стать экспертом в Data Science непросто: приходится изучать множество инструментов и быть гибким, чтобы вовремя узнавать о трендах. Хорошая стратегия — получить базу по Data Science на фундаментальном курсе, а новые инструменты и технологии изучать, решая практические задачи на работе. Рекламные публикации для бизнеса: Источник: tproger.ru Комментарии: |
|