Чем отличается процесс принятия решений у нейросети и ребенка |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-06-29 15:54 Facebook AI опубликовали работу, в которой проверяли нейросети на способность следовать принципу взаимной исключительности при принятии решений. Если поставить перед ребенком незнакомый предмет и знакомый и спросить, что из них является предметом, название которого он не знает, ребенок присвоит незнакомую категорию незнакомому объекту. При этом нейросетевые модели не выучивают, что категория у объекта может быть только одна. Исследователи подчеркивают потребность в проектировании нейросетей с подобными индуктивными предубеждениями. Сильные индуктивные предубеждения позволяют детям учиться быстро и адаптироваться к изменениям среды. Дети для этого используют принцип взаимной исключительности (mutual exclusivity). Благодаря ему, детям проще выучивать связи между словами. Взаимная исключительность предполагает, что если объект принадлежит к одной группе, ему не нужно присваивать еще одну. Фокус исследования в том, чтобы проверить, способны ли стандартные нейросетевые архитектуры к взаимной исключительности. Как оценить нейросеть Предполагается, что у модели есть знакомые ей и незнакомые предметы. У каждого предмета есть название (категорий) и изображение объекта. Как оценивается seq2seq модель:
Большая часть вероятности распределяется между ранее известными модели объектами. Как оценивается полносвязная модель:
Взаимная исключительность на задаче классификации Исследователи проверили нейросетевые модели на нескольких задачах. Для задачи классификации датасет состоял из 100 пар слово-изображение, которые были закодированы в вектора размером 100. Модель тренировалась на 90 парах, а 10 отводились для тестирования. Для каждого тестового объекта рассчитывалась его ME метрика. Рассчитанная ME метрика сравнивалась с максимально возможной. Всего было оценено около 400 моделей, но подробное описание архитектур отсутствует. Ниже видно, что нейросеть, даже с использованием дополнительных апгрейдов, плохо справлялась с классификацией незнакомых объектов. Источник: neurohive.io Комментарии: |
|