Рациональные точки на кривых от Вавилона до наших дней Георгий Шабат

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Пифагоровой тройкой называются три натуральных числа равные длинам сторон некоторого прямоугольного треугольника. Ещё древние вавилоняне умели находить такие тройки, причём огромных размеров и не пропорциональные друг другу. С современной точки зрения, такая задача равносильна нахождению точек с рациональными координатами на единичной окружности, стандартно вложенной в координатную плоскость.

Успехи вавилонян объясняются тем, что множество таких точек бесконечно; в течение тысячелетий постепенно выяснилось, что большинство плоских кривых этим свойством окружности не обладает. Однако полная ясность наступила лишь в двадцатом веке: было обнаружено, что всё дело в топологии комплексификации кривой.

На лекции будет рассказано об истории этих исследований и о проблемах, остающихся на сегодняшний день открытыми.

Георгий Шабат — д.ф.-м.н., профессор кафедры математики, логики и интеллектуальных систем в гуманитарной сфере Института лингвистики РГГУ.

Комментарии: