Первый удар по образованию был ещё в СССР. |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-05-22 21:11 Нужно признать — и я об атом заявлял (см. "Успехи математических наук", том 33, вып. 6 (204), 1978, стр. 21),— что некоторые дела в области математики сильно запущены из-за нашей собственной беспечности и непонимания происходящего. К числу таких запущенных дел принадлежит положение с математическим образованием в средней школе. Реформа преподавания, проведенная более 10 лет назад, привела его, на мой взгляд, к странному состоянию. Об этом мне уже довелось выступать на страницах газеты "Социалистическая индустрия" (21 марта 1979 года—статья "Этика и арифметика"), вместе с моими коллегами в журнале "Математика в школе" (1979, № 3). Пищу для печальных раздумий дает письмо тринадцати старшеклассниц из Вильнюса, опубликованное в "Комсомольской правде" 12 марта 1978 года — "Бесталанные ученики?"), неубедительно, по-моему, прокомментированное. В нем было выражено настоящее отчаяние: "Нам никак не одолеть программу по математике... Многого не понимаем, зубрежкой не все возьмешь... Такие заумные учебники... Вот и ходим мы в "дебилах", как называют нас учителя..." Однако всеобщая тревога возникла гораздо раньше. О преподавании математики заговорили повсюду, начиная с семей, в которых есть дети-школьники, и кончая высокими инстанциями. Родители обеспокоились, что, имея даже инженерное образование, они не понимают излагаемого в школе материала и не могут помочь своим детям в приготовлении уроков. Не ясен и смысл этого материала. Среди школьных педагогов — растерянность и недоумение по поводу новых программ. От многих из них мне приходится получать письма, в которых это выражено весьма эмоционально. О причинах данного явления я узнал из телевизионного выступления министра просвещения СССР М. А. Прокофьева (в 1979 году). Он сообщил, что двенадцать лет тому назад некоторыми авторитетами было признано, что математика, преподававшаяся тогда в средней школе, отстала от требований времени и потому ее нужно "модернизировать". Нет слов, в определенных усовершенствованиях школьная математика нуждалась, но осуществленные мероприятия не улучшили, а ухудшили положение. В результате, в частности, возникли те учебные программы и пособия, по которым ныне и учатся математике в школе. На одном совещании мне довелось услышать из уст академика-физика: "Совершенно понятно, почему родители даже с инженерным образованием не понимают школьной математики,— ведь это современная математика, а они учили только старую..." Вот, оказывается, в чем "секрет". Тут уж у меня самого возник вопрос: зачем же детям такая математика в средней школе, что в ней не могут разобраться даже специалисты с высшим техническим образованием? Осуществленный в последние годы пересмотр содержания школьного курса математики, включение в него элементов математического анализа, теории вероятностей и так далее можно в принципе рассматривать как явление прогрессивное. Однако в основу изложения авторы ныне действующих учебников положили теоретико-множественный подход, отличающийся повышенной степенью абстракции и предполагающий определенную математическую культуру, которой школьники не обладают и не могут обладать. Ее нет и у большинства преподавателей. Что же в итоге произошло? Искусственное усложнение учебного материала и непомерная перегрузка учащихся, внедрение формализма в содержание обучения и отрыв его от жизни, от практики. Многие важнейшие понятия школьного курса математики (такие, как понятия функции, уравнения, вектора и т. д.) стали труднодоступными для сознательного усвоения их учащимися. На определенном этапе развития математики высокоабстрактная теоретико-множественная концепция ввиду ее новизны стала модной, а увлечение ею — превалировать над конкретными исследованиями. Но теоретико-множественный подход — лишь удобный для математиков-профессионалов язык научных исследований. Действительная же тенденция развития математики заключается в ее движении к конкретным задачам, к практике. Современные школьные учебники по математике поэтому — шаг назад в трактовке этой науки, они несостоятельны по своему существу, поскольку выхолащивают суть математического метода. Стремление к большей общности, свойственное новым программам, и повсеместное употребление "множества" как научного термина выражается, например, в том, что геометрическая фигура определяется как "множество точек". А так как в теории множеств два множества могут быть равными, лишь полностью совпадая, то слово "равенство" уже не применимо к двум различным треугольникам. Это слово заменяется другим, не свойственным русскому языку, термином "конгруэнтность". Этот термин не употребляется в практике. Никакой строитель не будет говорить о двух "конгруэнтных балках" (или закройщик из ателье о "конгруэнтных кусках ткани"), а будет говорить о равных, или одинаковых балках (кусках ткани). Выше мы привели неудобоваримое определение вектора. Очень характерный пример того, как относительно простое, интуитивно ясное понятие преподносится педагогически абсурдным способом. А получилось оно у авторов таким ввиду того, что прежнее определение не укладывается в теоретико-множественную концепцию. Ведь вектор не есть "множество". И равенство векторов не есть теоретико-множественное равенство. Потому в современном школьном курсе геометрии вектор и предстал как "параллельный сдвиг пространства", а сложение двух векторов — как "последовательное применение двух параллельных сдвигов". Определения эти не только чрезвычайно сложны — они совершенно не соответствуют общепринятому аппарату физики, механики, всех технических наук. Новые учебники переполнены такого рода громоздкими, сложными, а главное, ненужными определениями. Математическое понятие уравнения стремятся свести к грамматическому понятию предложения. На бедные детские головы обрушивается понятие уравнения как "предложения с переменной" (Ю. Н. Макарычев, Н. Г. Миндюк, К. С. Муравин. Алгебра. Учебник для 6-го класса средней школы. М., "Просвещение", 1977, стр. 12). Наткнувшись на него, я никак не мог понять, что же это значит. Примеры уже даются в учебнике для четвертого класса. Так, приводится "предложение": "Река х впадает в Каспийское море". Далее разъясняют, что если вместо х подставить "Волга", то мы получим правильное утверждение, и, следовательно, "Волга" есть решение этого уравнения. Если же вместо х подставить "Днепр", то получится неверное утверждение, и потому "Днепр" не является решением этого уравнения (см. Н. Я. Виленкин, К. И. Пешков, С. И. Шварцбурд, А. С. Чесноков, А. Д. Семушин. Математика. Учебник для 4-го класса средней школы. М., "Просвещение", 1979, стр. 39). Какое это имеет отношение к математике? У нее своя специфика, и нет надобности сводить ее к грамматическим понятиям. Однако этот факт в высшей степени симптоматичен, если вернуться к тому, что говорилось выше о "философии математики", готовой свести предмет математической теории к манипулированию ее "языком" — к "лингвистике". Комментарии: |
|