Гипермерные вычисления подарят ИИ память и рефлексы |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-05-20 18:03 Американские ученые представили теоретическую основу для создания принципиально иных вычислительных машин будущего. Воплощение концепции в жизнь даст развитию искусственного интеллекта новый толчок. У нейронных сетей, которые лежат в основе большинства современных ИИ, есть ряд недостатков, замедляющих их работу. Например, нейросети не способны к запоминанию. Исследователи из Мэрилендского университета разработали альтернативный подход, который сделает искусственный интеллект намного более быстрым и эффективным. Как отмечает Next Web, наличие памяти позволяет людям не производить сложные вычисления при выполнении повседневных действий, а сразу переводить восприятие в действие. Однако ИИ такой способностью не обладает. Это приводит к проблемам — например, осложняет разработку автономных автомобилей. Метод гипермерных вычислений, разработанный в Мэрилендском университете, лишен этого недостатка. В отличие от распознавания образов на основе глубокого обучения, использование гипервекторов дает ИИ возможность напрямую «увидеть» мир и сделать собственные выводы. Новый ИИ не будет выполнять математические расчеты для каждого объекта, а применит активное восприятие. Благодаря доступу к памяти и умению формировать рефлексы алгоритм сможет понять, чего хочет, и какие действия необходимо предпринять для достижения цели. Это потребует намного меньше вычислений. Пока создание гипермерной вычислительной операционной системы остается чисто теоретическим. Тем не менее, работа исследователей даст толчок к развитию алгоритмов нового поколения, которые, в частности, выведут из тупика развитие автономного транспорта. Конечная цель команды — заменить итеративные модели нейросетей, которые требуют много времени на обучение, гипермерными алгоритмами. Благодаря активному восприятию они учатся намного быстрее. Несмотря на постоянные обещания автопроизводителей, по-настоящему автономные автомобили остаются научной фантастикой. Тем не менее, компаниям выгодно подогревать интерес к теме и получать все новые инвестиции. Источник: hightech.plus Комментарии: |
|