Физики собрали рекордно большой узор из 111 атомов рубидия в оптической ловушке

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Физики из Германии построили бездефектную фигуру из 111 атомов рубидия, пойманных в оптическую ловушку. Это в полтора раза больше предыдущего рекорда. При этом вероятность, с которой исследователя удавалось получить заданную структуру, находилась на уровне нескольких процентов (что тоже превышает аналоги). Более того, ученые утверждают, что с помощью предложенного метода этот результат можно неограниченно увеличивать — достаточно использовать более мощный лазер, который создает больше узлов решетки. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics, препринт работы выложен на сайте arXiv.org.

Реализовать квантовый компьютер можно разными способами, и один из способов полагается на создание бозе-конденсата холодных атомов с помощью оптической ловушки. В этом случае каждый атом отвечает одному кубиту, а спин атома определяет его состояние: если спин смотрит вверх, в кубит записана единица, в противном случае — ноль. По сравнению с другими квантовыми компьютерами, компьютеры на основе холодных атомов имеют ряд преимуществ. В частности, их легко масштабировать (то есть добавлять новые кубиты), а ошибки, которые возникают в ходе квантового вычисления из-за декогеренции системы, легко исправить. Именно с помощью такого компьютера в 2017 году физики поставили рекорд по числу одновременно работающих кубитов и впервые смоделировали процесс, недоступный классическому компьютеру. Подробнее про это достижение можно прочитать в материале «Пятьдесят кубитов и еще один».

Единственное, что до сих пор ограничивает создание неограниченно больших квантовых компьютеров на холодных атомах — это дефекты решетки, в которой «сидят» атомы. Для квантового компьютера нужно, чтобы в каждом узле решетки находился один и только один атом. Например, в указанном выше квантовом компьютере такая бездефектная решетка состояла из 51 атома. А в прошлом году физикам удалось довести этот результат до 72 атомов. В основном, улучшить этот результат мешают потери атомов, которые сопровождают перестройку решетки и заполнение пустых мест.

На этот раз группа физиков под руководством Герхарда Биркла (Gerhard Birkl) еще в полтора раза увеличила предыдущий рекорд, доведя число атомов в бездефектной решетке до 111. Прежде чем собирать решетку, исследователи приготовили бозе-конденсат атомов рубидия-87, охлажденный до температуры 100 микрокельвинов, а затем загрузили его в квадратную плоскую оптическую решетку шагом 1,5 микрометра и размером 19?19 шагов. Чтобы создать такую решетку, ученые пропустили инфракрасный лазер (длина волны 800 нанометров) через массив микролинз, которые расщепляли излучение лазера и создавали в каждом узле решетки оптическую ловушку. Поскольку глубина ловушек в тысячу раз превосходила температуру атомов конденсата, все атомы «сваливались» в ловушки. При этом в каждом узле решетки находилось несколько частиц.

Схема экспериментальной установки

Daniel Ohl de Mello et al. / Physical Review Letters, 2019

Чтобы избавиться от лишних атомов, ученые использовали технику «столкновительной блокады» (collisional blockade). Грубо говоря, в этой технике экспериментаторы попарно сталкивают атомы, сидящие в каждом узле решетки, и заставляют их вылетать за пределы представляющей интерес области. Если в узле изначально находилось четное число атомов, рано или поздно он совсем опустеет; в противном случае в нем останется один-единственный атом (а это физикам и нужно). После того, как в каждом узле решетки оставалось не более одного атома, ученые перетаскивали частицы с помощью оптического пинцета и заполняли «дырки» решетки, чтобы получить бездефектную фигуру. Впрочем, в ходе процесса часть атомов «срывалась с крючка», а потому собрать требуемый узор получалось не всегда — если частиц терялось слишком много, добрать их из области вокруг фигуры не получалось. Например, для квадрата 5?5 вероятность успеха составляла 99 процентов, для квадрата 8?8 — 64 процента, для квадрата 9?9 — 12 процентов, а для квадрата 10?10 падала до трех процентов. Для конфигураций неквадратной формы вероятность успеха была немного больше, поскольку для их создания в среднем требовалось перемещать меньше атомов.

Сборка бездефектной фигуры из распределения атомов после «столкновительной блокады»

Daniel Ohl de Mello et al. / Physical Review Letters, 2019

В конце концов, физикам удалось получить несколько правильных бездефектных структур, содержащих порядка ста атомов. К их числу относится квадрат 10?10 (100 атомов), «шахматная доска» размером 15?15, разбитая на 15 ячеек с пустотами (105 атомов), и два наложенных друг на друга квадрата размера 8?8 (111 атомов). В среднем сборка структуры требовала пять циклов перераспределения атомов и занимала 1,3 секунды. При этом время жизни структур достигало десяти секунд.

Бездефектные структуры, собранные физиками

Daniel Ohl de Mello et al. / Physical Review Letters, 2019

В настоящее время ученые работают над улучшением своего результата до 1000 атомов, пойманных бездефектной двумерной решеткой размером 50?50. Более того, авторы заявляют, что неограниченно увеличивать размер решетки им мешают только технические ограничения: чтобы создать больше узлов, в которых сидят атомы, нужен более мощный лазер. Однако действия, которые для этого нужно выполнить, совпадают с поставленным экспериментом.

Оптическая ловушка — чрезвычайно гибкий прибор, который позволяет моделировать огромное число физических процессов. Помимо квантового компьютера, с помощью оптической ловушки можно построить своеобразный коллайдер, собрать пространственно-временной кристалл, смоделировать космологическую инфляцию и излучение Хокинга. Кроме того, оптические ловушки используются в химии и биологии, а также имеют прикладные применения — например, в январе прошлого года американские инженеры получили с помощью оптического пинцета цветное трехмерное изображение, напоминающее голограмму из научно-фантастических фильмов. Учитывая огромную популярность этого прибора, в прошлом году Нобелевский комитет присудил премию по физике Артуру Эшкину, который разработал оптическую ловушку и поставил на ней первые эксперименты. Подробнее про его разработку и про принцип работы ловушки можно прочитать в материале «Скальпель и пинцет».

Дмитрий Трунин


Источник: nplus1.ru

Комментарии: