TensorFlow умер. Да здравствует TensorFlow 2.0! |
||||||||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-04-04 02:35 Вышло долгожданное обновление фреймворка машинного обучения – TensorFlow 2.0. Что же предлагают разработчики Google в альфа-версии? Вы новичок в TensorFlow? Поздравляем! Вы выбрали лучшее время, чтобы погрузиться в тематику искусственного интеллекта ? Основное преимущество TensorFlow – производительность. Этот инструмент создан для массового переноса моделей с уровня исследований в производство и фактически является промышленным станком для ИИ… но примерно таким же понятным для незнакомого с ним пользователя. Низкоуровневый TensorFlow 1.x труден для изучения и заставляет попотеть желающих открывать планеты или развивать медицину. Так что многие исследователи ограничивались Keras – высокоуровневым API для построения моделей глубокого обучения слой-за-слоем. Keras создан с нуля на Python. Он гибок и прост, оптимизирован под распространенные задачи глубокого обучения. Плюс он работает с несколькими фреймворками машинного обучения, не только с TensorFlow. А зачем выбирать между привлекательной удобностью Keras и мощным исполнением традиционного TensorFlow? Действительно, незачем! Эта идея и лежит в основе стратегии TensorFlow 2.0. Теперь Keras превратился в высокоуровневый API, встроенный в TensorFlow 2.0 по умолчанию в виде tf.keras. Его функционал богаче в сравнении со стандартным интерфейсом и позволяет «дотянуться» до продвинутых функций TensorFlow. С основными особенностями tf.keras можно ознакомиться в русскоязычной документации. Разработчики Google отказались от всего, что вы могли невзлюбить в TensorFlow 1.x. Магический ритуал, чтобы просто сложить два числа? Забудьте. Сессии TensorFlow? Почили в бозе. Переписывание кода для нового железа или масштабирования? Никогда более. Ужасные сообщения об ошибках? Устранено. TensorFlow 2.0 – это приятный, меняющий правила игры фреймворк, не только мощный, но и удобный. В TensorFlow 2.0 по умолчанию в качестве режима выполнения моделей используется Eager execution. То есть вычисление конкретных значений происходит по ходу выполнения, до построения полного вычислительного графа. Это упрощает отладку моделей и устраняет необходимость в шаблонном коде. В качестве структур данных теперь можно использовать стандартные структуры Python. Вы можете быстро проверять гипотезы и легко отлаживать код на небольших моделях и малом количестве данных. Eager execution также поддерживает ускорение на GPU и распределенные вычисления на множестве машин. TensorFlow 2.0 облегчает внедрение предобученных моделей, «заточенных» под распознавание изображений и речи, обнаружение объектов, рекомендации, обучение с подкреплением и т. д. Такие reference models позволяют «из коробки» применять лучшие практики и служат отправными точками для разработки собственных высокопроизводительных решений. Для хранения обученных моделей используется концепция SavedModel. Экосистема инструментов в TensorFlow 2.0 прошла тщательную очистку от конвейеров обработки данных до экспорта моделей в TensorBoard – инструмент для визуализации процесса обучения, отладки кода и оптимизации обучаемой модели. TensorBoard теперь совмещен с Keras, и может быть вызван однострочным кодом: Python
Рабочий процесс обучения, оптимизации и развертывания модели теперь выглядит так:
TensorFlow 1.x некоторое время еще будет поддерживаться, в том числе в течение года будут выпускаться исправления безопасности для последней вариации первой версии. Но главные силы после выпуска стабильной версии TensorFlow 2.0 будут перекинуты на новую версию и развитие ее экосистемы. Сейчас TensorFlow 2.0 доступен в альфа-версии: Shell
Для апгрейда до версии TensorFlow 2.0 команда разработчиков написала upgrade script: Shell
API в TensorFlow 2.0 стало более связным и ясным, сокращено дублирование функционала. В связи с этим произошли изменения названий множества функций и их расположения. Чтобы избежать проблем с совместимостью, написан модуль tf.compat.v1, содержащий все элементы API 1.x кроме tf.contrib. При запуске upgrade script все изменения можно посмотреть в логе. В результате обработки скриптом старая программа полностью переходит на новый API. Но для понимания нового, ясного стиля TensorFlow 2.0 нужно внимательно изучить документацию. Заметим, что сайт TensorFlow тоже существенно изменился, и значительная часть примеров теперь доступна и на русском языке. Основные источники: первый, второй. Источник: proglib.io Комментарии: |
|||||||