Робота научили резать огурцы и помидоры |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-04-07 04:16 Американские инженеры создали робота, способного резать овощи на ломтики. Особенность подхода, выбранного разработчиками, заключается в том, что изначально робот учился другой задаче, которая помогла выучить основной навык — сначала робот был обучен предсказывать толщину ломтиков, а уже после этого научился качественно резать их, рассказывают авторы статьи, опубликованной на arXiv.org. Манипуляция с объектами — одна из основных задач в робототехнике. Для выполнения даже простых действий с предметами робот должен обладать множеством навыков: уметь распознавать объекты, рассчитывать оптимальное место захвата или другого действия, планировать траекторию перемещения манипулятора и предсказывать свойства объектов. Последний навык крайне важен при взаимодействии с мягкими объектами, форма и другие свойства которых могут меняться прямо во время взаимодействия. Одна из модельных задач, позволяющих отработать нужные для взаимодействия с различными объектами навыки — нарезка овощей. Во время этого казалось бы простого действия робот вынужден работать с предметами, которые деформируются при взаимодействии с ножом, что, к примеру, приводит к изменению траектории нарезки и конечной формы ломтика. Оливер Крёмер (Oliver Kroemer) и его коллеги из Университета Карнеги — Меллон выбрали необычный подход для решения этой проблемы. Сначала они обучили алгоритм выполнению промежуточной задаче — предсказанию толщины ломтика и оставшегося овоща по одной двумерной фотографии. Для этого они создали датасет, состоящий из пар изображений, сделанных до и после разрезания. Во время создания датасета инженеры создавали случайный план нарезки (несколько ломтиков заданной толщины), а затем нарезали овощ и делали его снимки. Таким образом авторы работы набрали 50 демонстраций (по несколько отрезов) для огурцов и 25 для помидоров. Кроме того, инженеры обучили нейросеть обнаруживать овощи с помощью датасета из примерно четырех тысяч огурцов и помидоров.
Во время обучения нейросети для предсказания толщины ломтика инженеры научили ее переводить исходные данные в виде снимка в векторное представление. Авторы работы отмечают, что это позволило получить обученную часть нейросети, способную связывать снимки овощей с их свойствами. После обучения промежуточного алгоритма разработчики приступили к обучению основного. Его задача заключается в том, чтобы составить траекторию движения манипулятора с ножом. Для этого инженеры воспользовались методом имитационного обучения, при котором авторы руками управляли движением манипулятора во время отрезания ломтиков, а алгоритм впоследствии пытался воссоздать аналогичные движения как можно более точно. Ранее другая группа американских инженеров научила робота с манипулятором взаимодействию с овощами и фруктами для того, чтобы кормить людей с вилки. Разработчики обучили робота по-разному обращаться с разными типами еды. К примеру, поскольку кусок банана может соскользнуть с вилки, манипулятор накалывает его не вертикально, а под углом. Григорий Копиев Источник: nplus1.ru Комментарии: |
|