Резидентская программа Яндекса, или Как опытному бэкендеру стать ML-инженером |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-04-09 15:52 Яндекс открывает резидентскую программу по машинному обучению для опытных бэкенд-разработчиков. Если вы много писали на C++/Python и хотите применить эти знания в ML — то мы научим вас заниматься практическими исследованиями и выделим опытных кураторов. Вы поработаете над ключевыми сервисами Яндекса и получите навыки в таких областях, как линейные модели и градиентный бустинг, рекомендательные системы, нейросети для анализа изображений, текста и звука. Ещё вы узнаете, как правильно оценивать свои модели с помощью метрик в офлайне и онлайне.
Продолжительность программы — один год, в течение которого участники будут работать в управлении машинного интеллекта и исследований Яндекса, а также посещать лекции и семинары. Участие оплачивается и предполагает полную занятость: 40 часов в неделю, начиная с 1 июля этого года. Приём заявок уже открыт и продлится до 1 мая. А теперь подробнее — о том, какую аудиторию мы ждём, каким будет рабочий процесс и в целом, как бэкенд-специалисту переключиться на карьеру в ML. Направленность Residency Programs есть у многих компаний, включая, например, Google и Facebook. В основном они нацелены на специалистов младшего и среднего уровня, которые пробуют шагнуть в сторону ML-исследований. Наша программа — для другой аудитории. Мы приглашаем бэкенд-разработчиков, которые уже приобрели достаточно опыта и точно знают, что в своих компетенциях им нужно сдвигаться в сторону ML, получить практические навыки — а не навыки учёного — в решении промышленных задач машинного обучения. Это не значит, что мы не поддерживаем молодых исследователей. Для них мы организовали отдельную программу — премию имени Ильи Сегаловича, которая тоже позволяет поработать в Яндексе. Где резиденту предстоит работать Мы в управлении машинного интеллекта и исследований сами разрабатываем идеи проектов. Основной источник вдохновения — научная литература, статьи, тренды сообщества исследователей. Я и мои коллеги анализируем прочитанное, смотрим, как можно улучшить или расширить методы, предложенные учёными. При этом каждый из нас учитывает свою область знаний и интересов, формулирует задачу исходя из направлений, которые считает важными. На стыке результатов внешних исследований и собственных компетенций обычно и рождается идея проекта. Что предстоит делать В Яндексе — и даже конкретно в нашем управлении — развиваются все актуальные направления ML. Наша задача — улучшать качество самых разнообразных продуктов, и это служит стимулом проверять всё новое. К тому же регулярно появляются новые сервисы. Так что в лекционной программе есть все ключевые (хорошо себя зарекомендовавшие) направления машинного обучения в промышленной разработке. При составлении моей части курса я использовал опыт преподавания в Школе анализа данных, а также материалы и наработки других преподавателей ШАДа. Знаю, что коллеги делали так же. Выбор студента Что обычно мешает заняться ML Если бэкендер стремится стать ML-инженером, он — без учёта резидентской программы — может выбрать из двух направлений развития. Источник: habr.com Комментарии: |
|