Python – оправданы ли перспективы? - KVERNER |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-04-27 12:18 Python быстро становится самым популярным языком программирования в мире, а его универсальность и простота использования позволили ему добиться широкого распространения в сфере финансов, став многофункциональным инструментом для количественных аналитиков и других финансовых технологов. Наука о данных стала широко распространена во всем финансовом секторе, и Python почти всегда являлся её частью уравнения. Можно утверждать, что симбиоз науки о данных и Python привел к значительному росту анализа данных в области финансов, начиная от обнаружения мошенничества и анализа рынка и рисков, с принятием решений в области инвестиций. Однако, как и при любой технологической тенденции, важно понимать ограничения и риски, прежде чем прыгать на подножку. Итак, почему вокруг Python так много шума? Он действительно оправдывает свои надежды? И что еще более важно, какие риски следует учитывать при работе с этим популярным языком программирования? Почему Python стал настолько популярным? Универсальный и простой в использовании. Простота использования Python не случайна. Разочарованный недостатками других языков программирования, в конце 1989 года Гвидо ван Россум решил создать тот, который будет легко читаться и иметь максимальную гибкость. Синтаксис Python настолько прост в изучении, что даже те, кто никогда не писали код, могут следовать логике. Это позволяет пользователям писать код быстрее и с меньшим количеством ошибок. Обширная экосистема с мощными библиотеками. Python имеет обширный набор библиотек, которые могут сэкономить время и сократить цикл разработки. Библиотеки математики и статистики, такие как NumPy и SciPy, очень хорошо подходят для финансовой аналитики, и когда пользователи добавляют инструменты, такие как Jupyter для интерактивной разработки, Pandas для управления кадрами данных и Plotly для пользовательского интерфейса (UI) и визуализации, Python становится очень мощным инструментом. В частности, Jupyter становится очень продуктивной средой для совместной работы и обмена идеями между командами на веб-платформе. Эта экосистема является значительным фактором в огромных организациях, повышающих производительность, с Python. Стандартные библиотеки и инструменты позволяют quants сосредоточиться на создании конкурентного преимущества, вместо того чтобы тратить ресурсы на новые базовые функции. Усиление совместной работы. Эффективность и производительность. Большой пул ресурсов, доступных для тех, кто использует Python, упрощает и ускоряет работу, а это значит, что многие могут создавать собственные пользовательские аналитические материалы и создавать отчеты без необходимости проходить внутреннюю команду разработчиков или ждать следующего выпуска программного обеспечения. Эта скорость в настройке функциональности повышает гибкость в бизнесе, а также может использоваться для быстрого прототипа новых рабочих процессов и отчетов без необходимости дорогостоящих проектов разработки. Простота использования и настройки означают, что ряд ролей в организациях использует Python, а не другие языки программирования, поэтому не только традиционные разработчики имеют право голоса в процессе разработки. С Python могут участвовать участники, трейдеры и портфельные менеджеры. Это приводит к расширению сотрудничества и позволяет быстро уменьшать сроки разработки, экономя время и финансовые затраты. Риски с Python Хотя есть много веских причин использовать Python, но так же у него есть ограничения. Даже некоторые из преимуществ могут привести к рискам, если их не будут тщательно контролировать. Легко двигаться, но трудно масштабировать. Поскольку Python настолько прост в использовании, люди часто создают приложения, не имея при этом надлежащего плана для управления ключевыми областями. Однако без правильных планов, технологий и рамок существует риск того, что проект Python рухнет под собственным весом. Например, при использовании Python в большой организации может быть сложно поддерживать контроль над кодом, различными версиями данных и моделей и у которых есть доступ к приложениям. Пусть покупатель будет бдителен Также стоит иметь в виду, что библиотеки, доступные с Python, имеют открытый исходный код, и пользователи должны быть осторожны, какие из них они используют. В отличие от коммерческого программного обеспечения, которое может быть дорогостоящим — централизованное управление кодом или поддержка отсутствует, поэтому важно, чтобы пользователи выбирали библиотеки, поддерживаемые надежным сообществом пользователей. В области науки о данных NumPy и SciPy являются примерами надежных библиотек, и есть много других таких библиотек. Такие библиотеки проверены, высоко оценены и широко используются. Обновления К сожалению, отсутствие контроля при реализации кода Python может привести к использованию различных используемых библиотек и функций. Это может представлять проблемы при обновлении, что приводит к сбоям в работе кода и последующим сбоям системы. Например, проблемы могут возникать при использовании Python 2 по сравнению с Python 3 в разных частях организации, а затем могут возникать и при обновлении части своего технологического стека, когда он несовместим со старыми версиями. Когда обновление не выполняется должным образом, это может привести к простою и дополнительным расходам. Однако этот риск можно смягчить благодаря наличию мощных процессов и средств контроля над выпуском нового кода и управления обновлениями. Скорость и надежность Существует общее представление о том, что Python не такой быстрый с точки зрения скорости выполнения, как скомпилированные языки, такие как C ++. Как правило, Python не будет использоваться для тех же задач, что и C ++; он лучше всего используется для интеграции, расширения фреймворков, где скорость не имеет первостепенной важности. Точно так же неотъемлемая гибкость и открытость Python можно считать менее надежной. Ключевым моментом здесь является то, что Python легко используется в сочетании с другими языками, поэтому в случаях, когда пользователям нужно использовать более структурированный язык, они все равно могут использовать Python для расширения своих усилий в области развития. Это можно сделать эффективно, если у пользователей есть надежный стек технологий и фреймворк, который позволит им сохранить преимущества использования C ++ для критического кода, а также скриптировать его, используя гибкость Python. Рекомендации по использованию Python Одна из опасностей внедрения новых технологий — это не полное понимание того, где лежат потенциальные риски, а использование Python во внутренней структуре ничем неотличается. Существенно важно подумать о том, где используется Python и как он развертывается во избежание определённых рисков. Вот несколько ключевых предложений по смягчению этих рисков:
Заключение Python быстро развивается, следовательно, имеет огромные преимущества в сотрудничестве и экономии времени. С этой точки зрения это очень экономически выгодно. Python позволяет компаниям быть более динамичными и гибкими, устраняя необходимость долго ждать, поскольку разработчики создают новый пользовательский интерфейс или вендоры создают рабочий процесс. Тем не менее, существует компромисс между надежностью внутренних систем и гибкостью использования Python. Открытые и бесплатные библиотеки имеют очевидные преимущества, но могут представлять риски, если версии не контролируются, а обновления не обрабатываются должным образом. Использование Python может помочь разработчикам и трейдерам легко создавать пользовательские приложения, отчеты и анализы, которые способствуют более эффективному решению в области инвестиций и рискам. Поэтому стоит инвестировать в системы, которые позволяют использовать Python для расширяемости и настройки, а также обеспечивают централизованное моделирование. Этот подход позволит свободным quants и разработчикам увязнуть в простом обслуживании инфраструктуры и дать им больше времени, чтобы сосредоточиться на повышении ценности их бизнеса. Источник: www.kverner.ru Комментарии: |
|