Как бизнесу извлекать пользу из больших данных? |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-04-12 16:00 Статья подготовлена для студентов курса «Big Data для менеджеров» в образовательном проекте OTUS. Растущий объём информации и одновременное удешевление вычислений и хранения данных породили понятие больших данных (big data). Речь идёт не только о крупных массивах данных, но и о данных, которые обрабатываются с высокой скоростью либо обладают сильной вариативностью. Ваши бизнес-процессы обслуживает какая-либо информационная система, например CRM. Или же у вас есть сайт, работает приложение для смартфонов, а через электронную почту, мессенджеры, телефон в вашу службу поддержки поступают обращения от клиентов. Это означает, что у вас уже есть данные, которые накопив в достаточном объёме, можно анализировать. Какие же данные могут принести бизнесу пользу?
2. Журналы действий пользователя (веб-логи). Это данные, генерируемые различными сенсорами, датчиками IT-систем, серверами, а также системами статистики веб-сайтов и мобильных приложений. Генерация веб-логов происходит быстро, и таких данных много. Исторически эти данные не обрабатывались, но сейчас благодаря проникновению цифровых технологий они повсеместно используются в аналитических задачах. 3. Различные данные из соцсетей, чатов, цифровых каналов коммуникаций, интернета вещей (т. е. данные с различных датчиков). 4. Аудио- и видеоданные. Как правило, они слабо структурированы и потому с трудом поддаются анализу, однако обладают большой ценностью. Например, видео с камер в аэропорту можно использовать для предотвращения террористических актов и других чрезвычайных ситуаций, можно также проанализировать поведение пассажиров для улучшения эргономики крупных транспортных узлов. 5. Методы анализа больших данных, основанных на построении автоматизированных аналитических моделей – машинном обучении. С его помощью формируются алгоритмы, которые находят скрытые взаимосвязи, обучаются, помогают строить прогнозы, оптимизируют различные бизнес-процессы. Таким образом можно отработать гораздо большее количество гипотез, чем в состоянии сделать человек. От чего зависит модель анализа данных? Модель анализа данных зависит от области применения. Вот примеры:
2. Гипермаркет мебели и товаров для дома Hoff собирает данные о покупателе: о его покупках, действиях на сайте и др. Эта информация используется для формирования персональных предложений клиенту, начиная от акций ко дню рождения до таргетированных предложений на основе анализа покупок и поведения на сайте. Профессии, которые будут самыми востребованными в ближайшие годы В логистике анализ поступающих от автопарка данных помогает оптимизировать процессы доставки, в медицине большие данные применяют для определения оптимального состава и дозировки лекарств, в авиаперевозках – для профилактики оборудования и предупреждения технических сбоев, в производстве – для моделирования условий эксплуатации и тестирования новых продуктов, в маркетинге – для персонализированных рекламных коммуникаций. В промышленности технологии анализа больших данных позволяют лучше отслеживать показатели оборудования (на основе информации с датчиков). Многие компании прогнозируют поломку промышленного оборудования или определяют время техосмотра, проанализировав синхронные данные с разных датчиков. Но как правильно поставить бизнес-задачу для анализа больших данных? Возможны два подхода:
Универсальных алгоритмов изучения данных не существует. Классифицировать все данные и составить список, какие данные какой цели соответствуют, пока невозможно. Анализ данных – поле для фантазии, нужно думать, строить и проверять гипотезы с учетом специфики отрасли и компании. А вы что думаете по этому поводу? Оставляйте комментарии! Источник: m.vk.com Комментарии: |
|