ИИ в сельском хозяйстве.

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Искусственный интеллект в 2017 году начал покорять и отрасль сельского хозяйства и торговли продуктами питания. Сергей Николенко, научный руководитель платформы Neuromation.io, специально для Milknews рассказывает о будущих сельскохозяйственных приложениях, в которых могут быть использованы синтетические данные.

Компьютерное зрение для анализа посевов: смотреть и видеть

Современное сельское хозяйство — это огромная отрасль. Чтобы накормить миллиарды людей, нужно много земли, и обработать её вручную в наше время уже, конечно, невозможно. Болезни растений и нашествия насекомых часто приводят к неурожаям, а при современных масштабах сельского хозяйства такие нашествия сложно вовремя выявить и нейтрализовать в зародыше.

Это важная область, где могут помочь алгоритмы компьютерного зрения. Растениеводы используют компьютерное зрение для распознавания заболеваний культур: как на микроуровне, по снимкам листьев и растений крупным планом, так и на макроуровне, выявляя ранние признаки заболеваний растений или распространения вредителей по данным аэрофотосъёмки. Все эти проекты обычно основаны на основном современном подходе к компьютерному зрению: сверточных нейронных сетях (convolutional neural networks, CNN).

Заметим, что речь здесь идёт о компьютерном зрении в очень широком смысле. Во многих случаях фотографии — отнюдь не лучший источник данных, и многие важные аспекты жизни растений лучше изучать другими способами. Зачастую состояние растений можно лучше понять, например, собирая при помощи специальных датчиков гиперспектральные изображения или выполняя лазерное трехмерное сканирование; такие методы всё чаще используются в агрономии. Данные такого рода обычно имеют высокое разрешение и по своей природе ближе к медицинским снимкам, чем к фотографиям; одна из систем наблюдения за посадками прямо так и называется — AgMRI. Для обработки этих данных нужны специальные модели, но их пространственная структура позволяет применять современные технологии компьютерного зрения, в частности сверточные нейронные сети.

Недавно 37 миллионов долларов были вложены в создание Исследовательского центра фенотипирования и обработки изображений растений (Plant Phenotyping and Imaging Research Centre) в Университете Саскачевана (Saskatchewan). Это целая организация, основная задача которой — сбор больших наборов данных о культурах (обычно в виде фотографий или описанных выше трёхмерных изображений) и сопоставление данных о фенотипе с генотипом растений; результаты таких проектов можно использовать для совершенствования сельскохозяйственных технологий во всем мире.

Робототехника в сельском хозяйстве

Познакомьтесь с Prospero, автономным сельскохозяйственным роботом, который ужасно похож на WALL-E. Он может выкопать в земле ямку и посадить туда растение, следуя предустановленным общим шаблонам, но учитывая при этом и конкретные особенности ландшафта. Потом Prospero будет ухаживать за посадками, работая с каждым растением индивидуально. А когда настанет время, он соберёт урожай, и при этом снова будет обрабатывать каждое растение точно так, как нужно. Prospero основан на концепции "роевого земледелия”: посмотрите это видео и представьте себе армию маленьких Prospero, которая ползет по полям, оставляя за собой аккуратные ровные ряды растений.

Что интересно, Prospero на самом деле появился ещё в 2011 году, до расцвета современной революции глубокого обучения. Однако он по-прежнему остается прототипом, пока не нашедшим широкого применения. А сегодня роботы распространяются в сельском хозяйстве, позволяя автоматизировать всё больше рутинных задач:

  • автоматизированные беспилотные летательные аппараты опрыскивают сельскохозяйственные культуры; маленькие юркие дроны могут обеспечить более точную доставку опасных химикатов, чем обычные самолеты; более того, тех же дронов-опрыскивателей можно использовать и для аэрофотосъемки, из которой получатся данные для алгоритмов компьютерного зрения из первой части этой статьи;
  • всё больше развиваются и применяются специализированные роботы для сбора урожая: зерноуборочные комбайны существуют давно, но только сейчас, при помощи современных методов компьютерного зрения и робототехники, получилось разработать, например, робота, собирающего клубнику;
  • Hortibot, недавно разработанный учеными Орхусского университета (Aarhus University) в Дании, способен распознавать и уничтожать сорняки, удаляя их механическим способом или точечно опрыскивая гербицидами; это еще один большой успех современной робототехники и компьютерного зрения, поскольку отличать сорняки от полезных растений и работать с мелкими растениями при помощи манипуляторов раньше не особенно-то получалось.

Хотя многие из этих роботов по-прежнему остаются прототипами или проходят испытания в небольших масштабах, уже ясно, что робототехника и сельское хозяйство созданы друг для друга. Можно смело предсказывать, что все больше и больше сельскохозяйственных работ будут автоматизированы в ближайшем будущем.

Литература: https://agrovesti.net


Источник: m.vk.com

Комментарии: