Действительно ли надёжна квантовая криптография? |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-04-03 18:00 Тысячи лет лучшие умы человечества изобретают способы защитить информацию от чужих глаз, но каждый раз находится способ раскрыть тайну шифра и прочитать секретные документы. Очередным святым Граалем криптографов всего мира стала квантовая криптография, в рамках которой информация передаётся с помощью фотонов. Фундаментальные свойства фотона как квантовой частицы таковы, что измерение характеристик неизбежно меняет его состояние. Другими словами, невозможно тайком перехватить информацию, передаваемую по квантовому каналу, потому что это изменит её. Или всё-таки возможно? Принципы работы квантовой криптографии Впервые идею использования квантовых объектов для защиты информации высказал Стивен Визнер в 1970 году. Он придумал идею банкноты с квантовой защитой, которые нельзя подделать. Прошло много времени с тех пор, но никто так и не придумал способ разместить на купюрах квантовые объекты, однако идея, которой Визнер поделился со своим бывшим однокурсником Чарльзом Беннетом, через несколько лет превратилась в способ защиты информации, получивший название квантовой криптографии. В 1984 году Беннет совместно с Жилем Брассардом из Монреальского университета доработали идею Визнера для передачи зашифрованных сообщений с помощью квантовых технологий. Они предложили использовать квантовые каналы для обмена одноразовыми ключами шифрования, причём длина таких ключей должна была быть равной длине сообщения. Это позволяет передавать зашифрованные данные в режиме одноразового шифр-блокнота. Такой способ шифрования обеспечивает математически доказанную криптостойкость, то есть устойчив к взлому при неограниченных вычислительных возможностях взломщика. В качестве квантовой частицы для передачи информации решили использовать фотон. Его можно было легко получить с помощью имеющегося оборудования (лампы, лазеры и т.п.), и его параметры вполне поддавались измерению. Но для передачи информации требовался способ кодирования, позволяющий получить нули и единицы. В отличие от обычной электроники, где нули и единицы кодируются в виде разных потенциалов сигнала либо в виде импульсов определённого направления, в квантовых системах такое кодирование невозможно. Требовался параметр фотона, который можно задать при его генерации, а затем с нужной степенью достоверности измерить. Таким параметром оказалась поляризация. Сильно упрощая, поляризацию можно рассматривать как ориентацию фотона в пространстве. Фотон может быть поляризован под углами 0, 45, 90, 135 градусов. С помощью измерения у фотона можно различить только два взаимно перпендикулярных состояния или базиса:
Отличить горизонтальный фотон от фотона, поляризованного под углом 45 градусов, невозможно. В 1991 году Артур Экерт разработал алгоритм E91, в котором квантовое распределение ключей производилось с использованием квантовой запутанности — явления, при котором квантовые состояния двух или большего количества фотонов оказываются взаимозависимыми. При этом если один из пары связанных фотонов имеет значение 0, то второй однозначно будет равен 1, и наоборот. Разберёмся, как генерируется ключ шифрования в квантовой криптосистеме. Будем считать, что отправителя информации зовут Алисой, получателя — Бобом, а подслушать их разговор пытается Ева. В соответствии с протоколом BB84 секретный ключ генерируется следующим образом:
Если Ева попытается перехватить секретный ключ, ей нужно будет измерить поляризацию фотонов. Не зная правильного базиса для каждого измерения, Ева получит неверные данные, а поляризация фотона изменится. Эту ошибку сразу заметят и Алиса, и Боб. Поскольку искажения в квантовую систему может внести не только шпион, но и обычные помехи, необходим способ достоверно выявить ошибки. В 1991 году Чарльз Беннет разработал алгоритм выявления искажений в данных, передаваемых по квантовому каналу. Для проверки все передаваемые данные разбиваются на одинаковые блоки, затем отправитель и получатель различными способами вычисляют чётность этих блоков и сравнивают полученные результаты. В реальных квантовых криптосистемах взаимодействие между абонентами происходит по оптоволокну, при попадании света в оптоволокно поляризация необратимо нарушается. Поэтому коммерческие установки, о которых мы расскажем немного позже, используют другие способы кодирования битов. Например, компания ID Quantique использует для кодирования битов фазы света:
Практические реализации В 1989 году Беннет и Брассард построили в Исследовательском центре компании IBM установку для проверки своей концепции. Установка представляла собой квантовый канал, на одном конце которого был передающий аппарат Алисы, на другом принимающий аппарат Боба. Устройства размещались на оптической скамье длиной около 1 м в светонепроницаемом кожухе размерами 1,5 ? 0,5 ? 0,5 м. Система управлялась с помощью компьютера, в который были загружены программные представления легальных пользователей и злоумышленника. С помощью установки удалось выяснить, что:
Успех эксперимента Беннета и Брассарда привёл к тому, что другие исследовательские команды занялись разработками в области квантовой криптографии. С воздушных каналов перешли на волоконно-оптические, что сразу позволило увеличить дальность передачи: швейцарская компания GAP-Optique реализовала квантовый канал между Женевой и Нионом на базе оптоволокна длиной 23 км, проложенного по дну озера и сгенерировала с его помощью секретный ключ, уровень ошибок которого не превысил 1,4%. В 2001 году был разработан лазерный светодиод, который позволял испускать единичные фотоны. Это позволило передавать поляризованные фотоны на большее расстояние и увеличить скорость передачи. В ходе эксперимента, изобретателям нового светодиода Эндрю Шилдсу и его коллегами из TREL и Кембриджского университета удалось передать ключ со скоростью 75 кбит/с, хотя более половины фотонов терялись в процессе передачи. В 2003 году к исследованиям в сфере квантовой криптографии присоединилась Toshiba. Первую систему компания представила в октябре 2013 года, а в 2014 удалось добиться стабильной передачи квантовых ключей по стандартному оптоволокну в течение 34 дней. Максимальное расстояние передачи фотонов без повторителя составляло 100 км. Проверить работу установки в течение долгого времени было важно потому, что уровень потерь и помех в канале мог меняться под воздействием внешних условий. Проблемы квантовой криптографии Ограничениями первых реализаций квантовых систем шифрования были небольшая дальность передачи и очень низкая скорость:
Ограничения на дистанцию связаны с тем, что фотоны просто не выживают на больших расстояниях из-за тепловых шумов, потерь и дефектов оптоволокна. Высокий уровень помех приводит к тому, системе приходится многократно повторять посылку, чтобы скорректировать ошибки и согласовать итоговый сеансовый ключ. Это значительно замедляет скорость передачи. Для решения этой проблемы разрабатываются квантовые повторители — устройства, которые позволяют восстановить квантовую информацию, не нарушая её целостности. Один из способов реализации таких повторителей базируется на эффекте квантовой запутанности. Но максимальное расстояние, на котором удаётся сохранить эффект запутанности, на сегодняшний день ограничено 100 км. Дальше в дело вступают всё те же шумы: полезный сигнал просто теряется в них. А в отличие от обычных электромагнитных сигналов усилить или отфильтровать фотоны невозможно. В 2002 году был обнаружен эффект, который назвали квантовым катализом. В эксперименте, который проводила исследовательская группа под руководством Александра Львовского, удалось создать условия, при которых восстанавливалась запутанность квантовых состояний света. Фактически учёные научились «запутывать» фотоны, утратившие квантовую спутанность из-за долгого пути в оптоволокне. Это позволяет получать устойчивую связь на больших расстояниях при незначительном снижении скорости передачи. Ещё одна проблема квантовой криптографии — это необходимость создания прямого соединения между абонентами, ведь только такой способ взаимодействия позволяет организовать защищённое распределение ключей шифрования. Стоимость квантовых систем на сегодняшний день составляет десятки и сотни тысяч долларов, так что разработчики коммерческих решений предлагают технологию квантового распределения ключей в виде сервиса, ведь большую часть времени оптические каналы простаивают. Сеансовый ключ в этом случае формируется из двух частей: первую — мастер-ключ — формирует клиент с помощью средств традиционной криптографии, а вторую — квантовую — генерирует система квантового распределения ключей. Итоговый ключ получается путём побитовой операции XOR этих двух частей. Таким образом, даже если хакеры смогут перехватить или взломать мастер-ключ клиента, данные останутся в безопасности. Уязвимости квантовой криптографии Хотя квантовое распределение ключей позиционируется как неуязвимое для взлома, конкретные реализации таких систем позволяют провести успешную атаку и похитить сгенерированный ключ. Приведём некоторые разновидности атак на криптосистемы с протоколами квантового распределения ключа. Некоторые атаки носят теоретический характер, другие вполне успешно применяются в реальной жизни:
Разберём для примера атаку с ослеплением детектора получателя, разработанную Вадимом Макаровым с группой коллег из Норвежского университета естественных и технических наук. Чтобы получить ключ, детектор получателя ослепляют лучом лазера. В это время атакующий перехватывает сигнал отправителя. Ослеплённый квантовый детектор получателя начинает работать как обычный детектор, выдавая «1» при воздействии яркого импульса света вне зависимости от квантовых свойств импульса. В результате атакующий, перехватив «1», может послать на детектор получателя световой импульс, и он будет считать, что получил этот сигнал от отправителя. Другими словами, атакующий вместо квантового посылает получателю классический сигнал, а значит, имеет возможность похитить полученную от отправителя информацию, оставшись незамеченным. Группа Макарова продемонстрировала атаку на системах квантового шифрования производства ID Quantique и MagiQ Technologies. Для подготовки успешного взлома были использованы коммерческие экземпляры систем. Разработка атаки заняла два месяца. Сколько это стоит, работает ли в реальности и кому это нужно? Когда речь заходит о сферах, где требуется настоящая секретность, в расчёт не принимаются такие мелочи, как стоимость, ограничения на расстояние и скорость передачи. Новейшие образцы коммерческих систем квантовой криптозащиты имеют дальность действия более 1000 километров, что позволяет использовать их не только в пределах одной страны, но и для организации защищённых коммуникаций на межгосударственном уровне. Внедрение установок для квантовой криптографии в массовое производство приводит к удешевлению. К тому же производители разрабатывают различные решения для того, чтобы увеличить доступность квантовой криптографии и уменьшить её стоимость в расчёте на абонента. Например, система квантового распределения ключей производства Toshiba позволяет соединить только две точки на расстоянии до 100 км. Но при этом устройство позволяет одновременно использовать квантовую криптографию 64 абонентам. Несмотря на ограничения квантовая криптография имеет несомненное преимущество перед традиционной, поскольку обладает доказанной криптографической стойкостью. Однако, как показывает практика, доказанная стойкость — свойство теоретических моделей, концептов, но не конкретных реализаций. Разработанные способы атак на конкретные системы квантового распределения ключей лишают квантовую криптографию этого преимущества, поскольку никто не может гарантировать, что очередная квантовая криптоновинка не окажется уязвима для какой-либо атаки по сторонним каналам. С другой стороны, квантовые криптосистемы могут генерировать действительно случайный закрытый ключ. Расшифровать данные, зашифрованные на этом ключе, можно только если угадать ключ. Это позволяет защитить информацию на долгие годы, выбрав квантовый ключ достаточной длины. Некоторые факты, подтверждающие перспективность квантовой криптографии как технологии:
В мае 2018 года Toshiba объявила об изобретении нового протокола квантового распределения ключей под названием Twin-Field QKD (Quantum Key Distribution). Протокол позволяет передавать ключи на расстояния более 1000 км без доверенных ретрансляторов или квантовых повторителей. Его проверку на экспериментальной установке обещают в 2019. Быстрый прогресс, который наблюдается в области квантовой криптографии, не оставляет сомнений в том, что в ближайшее десятилетие использование этой технологии станет массовым и фактически превратится в стандарт. А криптографам и криптоаналитикам придётся готовиться к очередному витку сражения за защиту информации. Возможно, следующим несокрушимым рубежом станет криптография, основанная на теории решёток (Lattice-based Cryptography), которая неуязвима для квантовых компьютеров и может успешно работать даже на устройствах со слабыми процессорами. В любом случае многообразие вариантов непробиваемой защиты информация пойдёт на пользу конечным пользователям. Источник: habr.com Комментарии: |
|