Запутанные фотоны помогли распознать лица |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-03-29 19:57 Китайские физики построили систему распознавания лиц, основанную на призрачной визуализации с использованием запутанных фотонов. Работоспособность предложенного способа физики проверили на лицах пятерых сотрудников своей лаборатории. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics. Распознавание лица позволяет довольно точно установить личность человека, а потому играет важную роль в социальных взаимодействиях. В частности, с помощью такой системы можно ловить преступников или разблокировать смартфон. Как правило, системы распознавания лица анализирует фотографию и выделяет на ней наиболее важные детали, а потом ищет похожие снимки в базе данных. К сожалению, несмотря на быстрый прогресс в этой области, пока еще автоматическое распознавание лиц далеко от совершенства. В то же время, существует альтернативный подход к распознаванию картинок, который не требует сложного машинного анализа и способен одновременно анализировать большие объемы данных. В этом подходе пучок фотонов разделяют на два скоррелированных пучка, один из которых отражается от объекта и создает его изображение (сигнальный пучок), а второй пропускается через маску-фильтр (эталонный пучок). Если изображение совпадает с маской, то интенсивности обоих пучков окажутся скоррелированы; следовательно, по их интерференционной картине можно оценить степень совпадения изображений и быстро распознать очертание объекта. Впервые этот метод предложил еще в 60-х годах прошлого века американский физик Вандер Люгт (Vander Lugt). К сожалению, точность этого метода была неудовлетворительной. Определенного прогресса удалось добиться только в прошлом десятилетии, когда была открыта так называемая призрачная визуализация, основанная на запутанных фотонах. К сожалению, даже в этом случае ученым удавалось распознавать только простые объекты — например, определить число лучей звезды, склеенной из нескольких палочек. Группа физиков под руководством Лисян Чэня (Lixiang Chen) существенно улучшила этот метод и применила его для распознавания лиц. Для этого ученые немного изменили схему, по которой создаются запутанные фотоны и маска объекта. В отличие от предыдущих работ, исследователи работали с лазерными пучками, имеющими не гауссов, а более сложный пространственный профиль. Квантовое состояние пары запутанных фотонов ученые разложили в сумму состояний с фиксированным орбитальным и радиальным квантовым числом. Для этого физики использовали моды Лагерра—Гаусса, которые являются собственными функциями оператора преобразования Фурье. Затем ученые проследили за эволюцией квантового состояния сигнального фотона, проходящего через объект, и сопоставили объекту некоторый оператор. Наконец, с помощью алгебраических преобразований ученые восстановили по этому оператору фурье-спектр эталонного лазерного пучка, который описывает маску объекта. На практике физики получали нужный спектр с помощью пространственного модулятора света. В сентябре прошлого года американские физики впервые реализовали метод призрачной визуализации с помощью пучка запутанных электронов, а не фотонов. Это позволило ученым сделать микрофотографию предмета с помощью одного-единственного пикселя. В настоящее время системы распознавания лиц активно внедряются в повседневную жизнь. Например, в США такие системы проверяют билеты на концертах, а в Китае ищут преступников и контролируют внимательность школьников. В апреле прошлого года систему распознавания лиц запустили и в московском метро, причем в течение первого месяца она распознала более 40 преступников, которые находились в федеральном розыске и впоследствии были задержаны. А в прошлом месяце Департамент информационных технологий мэрии Москвы сообщил о разработке очков дополненной реальности с технологией распознавания лиц, предназначенных для московской полиции. Дмитрий Трунин Источник: nplus1.ru Комментарии: |
|