Запутанные фотоны помогли распознать лица

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Китайские физики построили систему распознавания лиц, основанную на призрачной визуализации с использованием запутанных фотонов. Работоспособность предложенного способа физики проверили на лицах пятерых сотрудников своей лаборатории. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics.

Распознавание лица позволяет довольно точно установить личность человека, а потому играет важную роль в социальных взаимодействиях. В частности, с помощью такой системы можно ловить преступников или разблокировать смартфон. Как правило, системы распознавания лица анализирует фотографию и выделяет на ней наиболее важные детали, а потом ищет похожие снимки в базе данных. К сожалению, несмотря на быстрый прогресс в этой области, пока еще автоматическое распознавание лиц далеко от совершенства.

В то же время, существует альтернативный подход к распознаванию картинок, который не требует сложного машинного анализа и способен одновременно анализировать большие объемы данных. В этом подходе пучок фотонов разделяют на два скоррелированных пучка, один из которых отражается от объекта и создает его изображение (сигнальный пучок), а второй пропускается через маску-фильтр (эталонный пучок). Если изображение совпадает с маской, то интенсивности обоих пучков окажутся скоррелированы; следовательно, по их интерференционной картине можно оценить степень совпадения изображений и быстро распознать очертание объекта. Впервые этот метод предложил еще в 60-х годах прошлого века американский физик Вандер Люгт (Vander Lugt). К сожалению, точность этого метода была неудовлетворительной. Определенного прогресса удалось добиться только в прошлом десятилетии, когда была открыта так называемая призрачная визуализация, основанная на запутанных фотонах. К сожалению, даже в этом случае ученым удавалось распознавать только простые объекты — например, определить число лучей звезды, склеенной из нескольких палочек.

Группа физиков под руководством Лисян Чэня (Lixiang Chen) существенно улучшила этот метод и применила его для распознавания лиц. Для этого ученые немного изменили схему, по которой создаются запутанные фотоны и маска объекта. В отличие от предыдущих работ, исследователи работали с лазерными пучками, имеющими не гауссов, а более сложный пространственный профиль. Квантовое состояние пары запутанных фотонов ученые разложили в сумму состояний с фиксированным орбитальным и радиальным квантовым числом. Для этого физики использовали моды Лагерра—Гаусса, которые являются собственными функциями оператора преобразования Фурье. Затем ученые проследили за эволюцией квантового состояния сигнального фотона, проходящего через объект, и сопоставили объекту некоторый оператор. Наконец, с помощью алгебраических преобразований ученые восстановили по этому оператору фурье-спектр эталонного лазерного пучка, который описывает маску объекта. На практике физики получали нужный спектр с помощью пространственного модулятора света.

Схема экспериментально установки

Xiaodong Qiu et al. / Physical Review Letters, 2019

Когда экспериментальная установка была построена, ученые перешли к завершающей стадии эксперимента. Для этого они сфотографировали пятерых сотрудников своей лаборатории, обрезали фотографии до размера 256?256 пикселей, перевели их в черно-белую фору и сопоставили черным и белым пикселям противоположные фазы. Полученные изображения выступали в качестве образцов, по которым строили маски и которые просвечивали сигнальными фотонами. По итогам измерений ученые построили квадратную матрицу, которая описывает корреляции между изображениями. Оказалось, что эта матрица практически совпадает с единичной матрицей — проще говоря, построенная установка распознала лица практически безошибочно. Впрочем, исследователи отмечают, что эта матрица также содержит недиагональные элементы, которые описывают небольшие сходства между разными лицами.

Матрица корреляций между фотографиями (справа) и их масками (слева). Чем больше красного в точке, тем выше корреляция

Xiaodong Qiu et al. / Physical Review Letters, 2019

Разумеется, пока предложенный учеными способ не может сравниться с машинным распознаванием. Тем не менее, он имеет ряд преимуществ, которые нельзя воспроизвести с помощью обычных систем распознавания лиц. В частности, авторы статьи подчеркивают, что благодаря особенностям призрачной визуализации их метод может работать в условиях очень низкого потока сигнальных фотонов. Следовательно, с его помощью можно распознавать изображения, практически не выдавая своего присутствия.

В сентябре прошлого года американские физики впервые реализовали метод призрачной визуализации с помощью пучка запутанных электронов, а не фотонов. Это позволило ученым сделать микрофотографию предмета с помощью одного-единственного пикселя.

В настоящее время системы распознавания лиц активно внедряются в повседневную жизнь. Например, в США такие системы проверяют билеты на концертах, а в Китае ищут преступников и контролируют внимательность школьников. В апреле прошлого года систему распознавания лиц запустили и в московском метро, причем в течение первого месяца она распознала более 40 преступников, которые находились в федеральном розыске и впоследствии были задержаны. А в прошлом месяце Департамент информационных технологий мэрии Москвы сообщил о разработке очков дополненной реальности с технологией распознавания лиц, предназначенных для московской полиции.

Дмитрий Трунин


Источник: nplus1.ru

Комментарии: