Введение в машинное обучение с помощью Python и Scikit-Learn |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-03-26 01:45 Меня зовут Александр, я занимаюсь машинным обучением и анализом веб-графов (в основном — теоретическим), а также разработкой Big Data продуктов в одном из операторов Большой Тройки. Это мой первый пост — прошу, не судите строго!) В последнее время ко мне все чаще стали обращаться люди, которые хотят научиться разрабатывать эффективные алгоритмы и участвовать в соревнованиях по машинному обучению с вопросом: «С чего начать?». Некоторое время назад я руководил разработкой инструментов Big Data для анализа медиа и социальных сетей в одном из учреждений Правительства РФ, и у меня остался некоторый материал, по которому обучалась моя команда и которым можно поделиться. Предполагается, что у читателя есть хорошее знание математики и машинного обучения (в команде были в основном выпускники МФТИ и студенты Школы Анализа Данных). По-сути это было введение в Data Science. В последнее время эта наука стала довольно популярна. Все чаще проводятся соревнования по машинному обучению (например, Kaggle, TudedIT), зачастую с немалым бюджетом. Целью данной статьи является дать читателю быстрое введение инструменты машинного обучения, чтобы он мог как можно скорее участвовать в соревнованиях. Наиболее распространенными инструментами Data Scientist'а на сегодняшний день являются R и Python. У каждого инструмента есть свои плюсы и минусы, однако, в последнее время по всем параметрам выигрывает Python (это исключительно мнение автора, к тому же пользующегося одновременно и тем и другим). Это стало после того, как появилась отлично документированная библиотека Scikit-Learn, в которой реализовано большое количество алгоритмов машинного обучения. Сразу отметим, что в статье мы остановимся именно на алгоритмах Machine Learning. Первичный анализ данных лучше обычно проводится средствами пакета Pandas, разобраться с которым можно самостоятельно. Итак, сосредоточимся на реализации, для определенности полагая, что на входе у нас есть матрица объект-признак, хранящаяся в файле с расширением *.csv Загрузка данных В первую очередь данные необходимо загрузить в оперативную память, чтобы мы имели возможность работать с ними. Сама библиотека Scikit-Learn использует в своей реализации NumPy массивы, поэтому будем загружать *.csv файлы средствами NumPy. Загрузим один из датасетов из репозитория UCI Machine Learning Repository: import numpy as np import urllib # url with dataset url = "http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data" # download the file raw_data = urllib.urlopen(url) # load the CSV file as a numpy matrix dataset = np.loadtxt(raw_data, delimiter=",") # separate the data from the target attributes X = dataset[:,0:7] y = dataset[:,8] Далее во всех примерах будем работать с этим набором данных, а именно с матрицей объект-признак X и значениями целевой переменной y. Нормализация данных Всем хорошо знакомо, что большинство градиентных методов (на которых по-сути и основаны почти все алгоритмы машинного обучения) сильно чувствительны к шкалированию данных. Поэтому перед запуском алгоритмов чаще всего делается либо нормализация, либо так называемая стандартизация. Нормализация предполагает замену номинальных признаков так, чтобы каждый из них лежал в диапазоне от 0 до 1. Стандартизация же подразумевает такую предобработку данных, после которой каждый признак имеет среднее 0 и дисперсию 1. В Scikit-Learn уже есть готовые для этого функции: from sklearn import preprocessing # normalize the data attributes normalized_X = preprocessing.normalize(X) # standardize the data attributes standardized_X = preprocessing.scale(X) Отбор признаков Не секрет, что зачастую самым важным при решении задачи является умение правильно отобрать и даже создать признаки. В англоязычной литературе это называется Feature Selection и Feature Engineering. В то время как Future Engineering довольно творческий процесс и полагается больше на интуицию и экспертные знания, для Feature Selection есть уже большое количество готовых алгоритмов. «Древесные» алгоритмы допускают расчета информативности признаков: from sklearn import metrics from sklearn.ensemble import ExtraTreesClassifier model = ExtraTreesClassifier() model.fit(X, y) # display the relative importance of each attribute print(model.feature_importances_) Все остальные методы так или иначе основаны на эффективном переборе подмножеств признаков с целью найти наилучшее подмножество, на которых построенная модель дает наилучшее качество. Одним из таких алгоритмов перебора является Recursive Feature Elimination алгоритм, который также доступен в библиотеке Scikit-Learn: from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression model = LogisticRegression() # create the RFE model and select 3 attributes rfe = RFE(model, 3) rfe = rfe.fit(X, y) # summarize the selection of the attributes print(rfe.support_) print(rfe.ranking_) Построение алгоритма Как уже было отмечено, в Scikit-Learn реализованы все основные алгоритмы машинного обучения. Рассмотрим некоторые из них. Логистическая регрессия Чаще всего используется для решения задач классификации (бинарной), но допускается и многоклассовая классификация (так называемый one-vs-all метод). Достоинством этого алгоритма является то, что на выходе для каждого объекта мы имеем вероятность принадлежности классу from sklearn import metrics from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X, y) print(model) # make predictions expected = y predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, predicted)) Наивный Байес Также является одним из самых известных алгоритмов машинного обучения, основной задачей которого является восстановление плотностей распределения данных обучающей выборки. Зачастую этот метод дает хорошее качество в задачах именно многоклассовой классификации. from sklearn import metrics from sklearn.naive_bayes import GaussianNB model = GaussianNB() model.fit(X, y) print(model) # make predictions expected = y predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, predicted)) K-ближайших соседей Метод kNN (k-Nearest Neighbors) часто используется как составная часть более сложного алгоритма классификации. Например, его оценку можно использовать как признак для обьекта. А иногда, простой kNN на хорошо подобранных признаках дает отличное качество. При грамотной настройке параметров (в основном — метрики) алгоритм дает зачастую хорошее качество в задачах регрессии from sklearn import metrics from sklearn.neighbors import KNeighborsClassifier # fit a k-nearest neighbor model to the data model = KNeighborsClassifier() model.fit(X, y) print(model) # make predictions expected = y predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, predicted)) Деревья решений Classification and Regression Trees (CART) часто используются в задачах, в которых объекты имеют категориальные признаки и используется для задач регрессии и классификации. Очень хорошо деревья подходят для многоклассовой классификации from sklearn import metrics from sklearn.tree import DecisionTreeClassifier # fit a CART model to the data model = DecisionTreeClassifier() model.fit(X, y) print(model) # make predictions expected = y predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, predicted)) Метод опорных векторов SVM (Support Vector Machines) является одним из самых известных алгоритмов машинного обучения, применяемых в основном для задачи классификации. Также как и логистическая регрессия, SVM допускает многоклассовую классификацию методом one-vs-all. from sklearn import metrics from sklearn.svm import SVC # fit a SVM model to the data model = SVC() model.fit(X, y) print(model) # make predictions expected = y predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, predicted)) Помимо алгоритмов классификации и регрессии, в Scikit-Learn имеется огромное количество более сложных алгоритмов, в том числе кластеризации, а также реализованные техники построения композиций алгоритмов, в том числе Bagging и Boosting. Оптимизация параметров алгоритма Одним из самых сложных этапов в построении действительно эффективных алгоритмов является выбор правильных параметров. Обычно, это делается легче с опытом, но так или иначе приходится делать перебор. К счастью, в Scikit-Learn уже есть немало реализованных для этого функций Для примера посмотрим на подбор параметра регуляризации, в котором мы по очереди перебирают несколько значений: import numpy as np from sklearn.linear_model import Ridge from sklearn.grid_search import GridSearchCV # prepare a range of alpha values to test alphas = np.array([1,0.1,0.01,0.001,0.0001,0]) # create and fit a ridge regression model, testing each alpha model = Ridge() grid = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas)) grid.fit(X, y) print(grid) # summarize the results of the grid search print(grid.best_score_) print(grid.best_estimator_.alpha) Иногда более эффективным оказывается много раз выбрать случайно параметр из данного отрезка, померить качество алгоритма при данном параметре и выбрать тем самым лучший: import numpy as np from scipy.stats import uniform as sp_rand from sklearn.linear_model import Ridge from sklearn.grid_search import RandomizedSearchCV # prepare a uniform distribution to sample for the alpha parameter param_grid = {'alpha': sp_rand()} # create and fit a ridge regression model, testing random alpha values model = Ridge() rsearch = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=100) rsearch.fit(X, y) print(rsearch) # summarize the results of the random parameter search print(rsearch.best_score_) print(rsearch.best_estimator_.alpha) Мы рассмотрели весь процесс работы с библиотекой Scikit-Learn за исключением вывода результатов обратно в файл, что предлагается сделать читателю в качестве упражнения, потому как одним из достоинств Python (и самой библиотеки Scikit-Learn) по-сравнению с R является отличная документация. В следующих частях мы рассмотрим подробно каждый из разделов, в частности, затронем такую важную вещь как Feauture Engineering. Я очень надеюсь, что данный материал поможет начинающим Data Scientist'ам как можно скорее приступить к решению задач машинного обучения на практике. В заключение хочу пожелать успехов и терпения тем, кто только начинает участвовать в соревнованиях по машинному обучению! Автор: akrot Источник: m.vk.com Комментарии: |
|