Введение в машинное обучение с помощью Python и Scikit-Learn

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Меня зовут Александр, я занимаюсь машинным обучением и анализом веб-графов (в основном — теоретическим), а также разработкой Big Data продуктов в одном из операторов Большой Тройки. Это мой первый пост — прошу, не судите строго!)

В последнее время ко мне все чаще стали обращаться люди, которые хотят научиться разрабатывать эффективные алгоритмы и участвовать в соревнованиях по машинному обучению с вопросом: «С чего начать?». Некоторое время назад я руководил разработкой инструментов Big Data для анализа медиа и социальных сетей в одном из учреждений Правительства РФ, и у меня остался некоторый материал, по которому обучалась моя команда и которым можно поделиться. Предполагается, что у читателя есть хорошее знание математики и машинного обучения (в команде были в основном выпускники МФТИ и студенты Школы Анализа Данных).

По-сути это было введение в Data Science. В последнее время эта наука стала довольно популярна. Все чаще проводятся соревнования по машинному обучению (например, Kaggle, TudedIT), зачастую с немалым бюджетом. Целью данной статьи является дать читателю быстрое введение инструменты машинного обучения, чтобы он мог как можно скорее участвовать в соревнованиях.

Наиболее распространенными инструментами Data Scientist'а на сегодняшний день являются R и Python. У каждого инструмента есть свои плюсы и минусы, однако, в последнее время по всем параметрам выигрывает Python (это исключительно мнение автора, к тому же пользующегося одновременно и тем и другим). Это стало после того, как появилась отлично документированная библиотека Scikit-Learn, в которой реализовано большое количество алгоритмов машинного обучения.

Сразу отметим, что в статье мы остановимся именно на алгоритмах Machine Learning. Первичный анализ данных лучше обычно проводится средствами пакета Pandas, разобраться с которым можно самостоятельно. Итак, сосредоточимся на реализации, для определенности полагая, что на входе у нас есть матрица объект-признак, хранящаяся в файле с расширением *.csv

Загрузка данных

В первую очередь данные необходимо загрузить в оперативную память, чтобы мы имели возможность работать с ними. Сама библиотека Scikit-Learn использует в своей реализации NumPy массивы, поэтому будем загружать *.csv файлы средствами NumPy. Загрузим один из датасетов из репозитория UCI Machine Learning Repository:

import numpy as np import urllib # url with dataset url = "http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data" # download the file raw_data = urllib.urlopen(url) # load the CSV file as a numpy matrix dataset = np.loadtxt(raw_data, delimiter=",") # separate the data from the target attributes X = dataset[:,0:7] y = dataset[:,8] 

Далее во всех примерах будем работать с этим набором данных, а именно с матрицей объект-признак X и значениями целевой переменной y.

Нормализация данных

Всем хорошо знакомо, что большинство градиентных методов (на которых по-сути и основаны почти все алгоритмы машинного обучения) сильно чувствительны к шкалированию данных. Поэтому перед запуском алгоритмов чаще всего делается либо нормализация, либо так называемая стандартизация. Нормализация предполагает замену номинальных признаков так, чтобы каждый из них лежал в диапазоне от 0 до 1. Стандартизация же подразумевает такую предобработку данных, после которой каждый признак имеет среднее 0 и дисперсию 1. В Scikit-Learn уже есть готовые для этого функции:

from sklearn import preprocessing # normalize the data attributes normalized_X = preprocessing.normalize(X) # standardize the data attributes standardized_X = preprocessing.scale(X)

Отбор признаков

Не секрет, что зачастую самым важным при решении задачи является умение правильно отобрать и даже создать признаки. В англоязычной литературе это называется Feature Selection и Feature Engineering. В то время как Future Engineering довольно творческий процесс и полагается больше на интуицию и экспертные знания, для Feature Selection есть уже большое количество готовых алгоритмов. «Древесные» алгоритмы допускают расчета информативности признаков:

from sklearn import metrics from sklearn.ensemble import ExtraTreesClassifier model = ExtraTreesClassifier() model.fit(X, y) # display the relative importance of each attribute print(model.feature_importances_)

Все остальные методы так или иначе основаны на эффективном переборе подмножеств признаков с целью найти наилучшее подмножество, на которых построенная модель дает наилучшее качество. Одним из таких алгоритмов перебора является Recursive Feature Elimination алгоритм, который также доступен в библиотеке Scikit-Learn:

from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression model = LogisticRegression() # create the RFE model and select 3 attributes rfe = RFE(model, 3) rfe = rfe.fit(X, y) # summarize the selection of the attributes print(rfe.support_) print(rfe.ranking_)

Построение алгоритма

Как уже было отмечено, в Scikit-Learn реализованы все основные алгоритмы машинного обучения. Рассмотрим некоторые из них.

Логистическая регрессия

Чаще всего используется для решения задач классификации (бинарной), но допускается и многоклассовая классификация (так называемый one-vs-all метод). Достоинством этого алгоритма является то, что на выходе для каждого объекта мы имеем вероятность принадлежности классу

from sklearn import metrics
from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X, y) print(model) # make predictions expected = y predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, predicted))

Наивный Байес

Также является одним из самых известных алгоритмов машинного обучения, основной задачей которого является восстановление плотностей распределения данных обучающей выборки. Зачастую этот метод дает хорошее качество в задачах именно многоклассовой классификации.

from sklearn import metrics
from sklearn.naive_bayes import GaussianNB model = GaussianNB() model.fit(X, y) print(model) # make predictions expected = y predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, predicted)) 

K-ближайших соседей

Метод kNN (k-Nearest Neighbors) часто используется как составная часть более сложного алгоритма классификации. Например, его оценку можно использовать как признак для обьекта. А иногда, простой kNN на хорошо подобранных признаках дает отличное качество. При грамотной настройке параметров (в основном — метрики) алгоритм дает зачастую хорошее качество в задачах регрессии

from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier # fit a k-nearest neighbor model to the data model = KNeighborsClassifier() model.fit(X, y) print(model) # make predictions expected = y predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, predicted))

Деревья решений

Classification and Regression Trees (CART) часто используются в задачах, в которых объекты имеют категориальные признаки и используется для задач регрессии и классификации. Очень хорошо деревья подходят для многоклассовой классификации

from sklearn import metrics
from sklearn.tree import DecisionTreeClassifier # fit a CART model to the data model = DecisionTreeClassifier() model.fit(X, y) print(model) # make predictions expected = y predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, predicted))

Метод опорных векторов

SVM (Support Vector Machines) является одним из самых известных алгоритмов машинного обучения, применяемых в основном для задачи классификации. Также как и логистическая регрессия, SVM допускает многоклассовую классификацию методом one-vs-all.

from sklearn import metrics
from sklearn.svm import SVC # fit a SVM model to the data model = SVC() model.fit(X, y) print(model) # make predictions expected = y predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, predicted))

Помимо алгоритмов классификации и регрессии, в Scikit-Learn имеется огромное количество более сложных алгоритмов, в том числе кластеризации, а также реализованные техники построения композиций алгоритмов, в том числе Bagging и Boosting.

Оптимизация параметров алгоритма

Одним из самых сложных этапов в построении действительно эффективных алгоритмов является выбор правильных параметров. Обычно, это делается легче с опытом, но так или иначе приходится делать перебор. К счастью, в Scikit-Learn уже есть немало реализованных для этого функций

Для примера посмотрим на подбор параметра регуляризации, в котором мы по очереди перебирают несколько значений:

import numpy as np
from sklearn.linear_model import Ridge from sklearn.grid_search import GridSearchCV # prepare a range of alpha values to test alphas = np.array([1,0.1,0.01,0.001,0.0001,0]) # create and fit a ridge regression model, testing each alpha model = Ridge() grid = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas)) grid.fit(X, y) print(grid) # summarize the results of the grid search print(grid.best_score_) print(grid.best_estimator_.alpha)

Иногда более эффективным оказывается много раз выбрать случайно параметр из данного отрезка, померить качество алгоритма при данном параметре и выбрать тем самым лучший:

import numpy as np from scipy.stats import uniform as sp_rand from sklearn.linear_model import Ridge from sklearn.grid_search import RandomizedSearchCV # prepare a uniform distribution to sample for the alpha parameter param_grid = {'alpha': sp_rand()} # create and fit a ridge regression model, testing random alpha values model = Ridge() rsearch = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=100) rsearch.fit(X, y) print(rsearch) # summarize the results of the random parameter search print(rsearch.best_score_) print(rsearch.best_estimator_.alpha)

Мы рассмотрели весь процесс работы с библиотекой Scikit-Learn за исключением вывода результатов обратно в файл, что предлагается сделать читателю в качестве упражнения, потому как одним из достоинств Python (и самой библиотеки Scikit-Learn) по-сравнению с R является отличная документация. В следующих частях мы рассмотрим подробно каждый из разделов, в частности, затронем такую важную вещь как Feauture Engineering.

Я очень надеюсь, что данный материал поможет начинающим Data Scientist'ам как можно скорее приступить к решению задач машинного обучения на практике. В заключение хочу пожелать успехов и терпения тем, кто только начинает участвовать в соревнованиях по машинному обучению!

Автор: akrot


Источник: m.vk.com

Комментарии: