Нейросеть вернула волосы Гоше Куценко |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-03-06 00:58 Корейские исследователи использовали методы машинного обучения для создания интерактивного графического редактора портретов. Пользователь размечает на лице нужные правки в виде наброска, а нейросеть самостоятельно реалистично редактирует снимок, рассказывают авторы статьи, опубликованной на arXiv.org. Для демонстрации работы нейросети разработчики, например, добавили улыбку Крису Хемсворту и вернули волосы Гоше Куценко. Современные графические редакторы позволяют проводить крайне реалистичную ретушь, однако это требует наличия развитого навыка обработки изображений. С развитием алгоритмов машинного обучения их стали внедрять и в графические редакторы, что позволило переложить часть действий при редактировании изображения с пользователя на программу. К примеру, Adobe Photoshop умеет самостоятельно отделять объекты от фона или даже дорисовывать фон. Однако, как правило, подобные технологии применимы в узком диапазоне условий, например, при наличии однородного фона на снимке. Некоторые исследователи научили нейросети проводить более сложные манипуляции, такие как превращение наброска в полноценный снимок, однако пока эти методы не позволяют получать реалистично выглядящее изображение. Чо Ён-Чжу (Youngjoo Jo) и Пак Ын-Юл (Jongyoul Park) из южнокорейского Научно-исследовательского института электроники и телекоммуникаций (ETRI) создали нейросеть, способную создавать реалистичные изменения в портретах людей, принимая в качестве исходных данных наброски. Исследователи выбрали популярную с сфере нейросетевой обработки изображений архитектуру генеративно-состязательной нейросети. Она состоит из двух подсетей: генератора, выполняющего основную задачу (в данном случае — обработку изображений), и дискриминатора, который пытается отличить изображения из генератора от настоящих изображений из обучающей выборки. В результате такой конкуренции генератор постепенно учится создавать максимально реалистичные изображения, которые дискриминатору сложно отличить от настоящих снимков. Григорий Копиев Источник: nplus1.ru Комментарии: |
|