Лучшие Open Source проекты по машинному обучению. Часть 2 |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-03-17 01:19 Статья подготовлена для студентов курса «Data Scientist» в образовательном проекте OTUS. В предыдущей заметке мы ознакомились с первой десяткой наиболее популярных опенсорсных проектов. Продолжаем наш «хит-парад». Deep universal probabilistic programming Библиотека от Uber AI Labs. Создавалась для вероятностного программирования в целях оптимизации работы такси-сервиса. Позволяет подбирать водителей и пассажиров, вычислять рациональные маршруты, искать выгодные варианты для совместных поездок. Deep Exemplar-Based Colorization Служит для раскрашивания чёрно-белых картинок. Используется свёрточная нейросеть, получающая цветное референсное изображение и применяющая его цветовую гамму по отношению к чёрно-белому рисунку или фото. Facets Не что иное, как инструмент визуализации датасетов Machine Learning. Сами визуализации имеют вид веб-компонентов Polymer на Typescript. Facets позволяет обнаруживать выбросы и сравнивать распределения по разным датасетам. Такие важные показатели, как высокий процент потерянных данных, выделяются красным. ELF with AlphaGoZero Комплексное решение, предназначенное для исследования игр с реимплементацией AlphaZero и AlphaGo Zero. Платформа включает в себя интуитивные API, совместное моделирование, мини-среды для стратегических видеоигр в реальном времени и многое другое. Detectron Программная система Facebook AI Research. Применяет продвинутые алгоритмы для распознавания объектов (например, нейросеть Mask R-CNN). Создана на Python на основе фреймворка Caffe2. Fast Style Transfer Пожалуй, одна из лучших свёрточных нейросетей. Позволяет переносить стиль с одних изображений на другие, делая это относительно быстро. Реализована в TensorFlow. Face recognition Инструмент для распознавания лиц. Выделяет черты лиц на фото и пытается идентифицировать человека. Для работы используется передовая технология распознавания лиц dlib. Отличается высокой точностью — около 99 %. Deep photo style transfer Очередной проект по переносу стилей. Характеризуется простым интерфейсом, позволяющим быстро объединить стиль и исходное изображение. AirSim Кросс-платформенный эмулятор для автомобилей, дронов и прочей техники. Создан на базе Unreal Engine. Поддерживает программно-аппаратное моделирование с известными полётными контроллерами, например, PX4. Позволяет создавать симуляции с весьма реалистичной графикой и физикой. Deep image prior Глубокая свёрточная нейронная сеть, позволяющая восстанавливать повреждённые изображения. Вы сможете восстановить картинки с пробелами и размытыми пятнами, убрать артефакты, шум, лишний текст. На этом всё, если хотите подробнее, вот вам источник на английском. P. S. Очевидно, что в современном мире роль машинного обучения и искусственного интеллекта с каждым годом будет возрастать. Уже сегодня проектов становится всё больше, поэтому специалисты по Data Scientist нужны всё чаще. И если вы хотите закрепиться в этой динамично развивающейся области, повышайте свои навыки и приобретайте соответствующие знания. А лучший способ это сделать — пройти обучение у практикующих экспертов на курсе «Data Scientist». Источник: m.vk.com Комментарии: |
|