Искусственный интеллект научился предсказывать сигналы элементарных частиц |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-03-18 12:56 Искусственный интеллект научился предсказывать сигналы элементарных частиц Ученые ВШЭ и Яндекса разработали метод, который ускорит моделирование процессов на Большом адронном коллайдере (БАК). Результаты исследования опубликованы в Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Эксперименты в физике высоких энергий требуют работы с большими данными. Например, в БАК каждую секунду происходят миллионы столкновений. Детекторы регистрируют эти частицы и определяют их характеристики. Но для точного анализа экспериментальных данных необходимо знать, как реагирует детектор на известные частицы. Обычно для этого используют специальное программное обеспечение, настроенное на геометрию и физику конкретного детектора. Такие пакеты предоставляют достаточно точное описание откликов среды на прохождение заряженных частиц, однако скорость генерации каждого события может быть очень низкой. В частности, симуляция одного события БАК может занимать несколько секунд. С учётом того, что в самом коллайдере каждую секунду сталкиваются миллионы заряженных частиц, точное описание становится недоступно. Исследователи ВШЭ и Школы анализа данных Яндекса смогли ускорить симуляцию с помощью генеративных состязательных сетей (Generative Adversarial Networks). Это две нейронные сети, которые в ходе конкурентного обучения соревнуются между собой. Такой способ обучения используется, например, для генерации фотографий никогда не существовавших людей. Одна учится создавать похожие на реальность образы, а другая стремится найти отличия между искусственными и реальными представлениями. — Удивительно, как методы, разрабатываемые, грубо говоря, для генерации реалистичных фотографий котов, позволяют на несколько порядков ускорить физические расчёты, — добавляет один из авторов исследования, аспирант ФКН ВШЭ Никита Казеев. Исследователи научили генеративные состязательные сети предсказывать поведение заряженных элементарных частиц. Результаты показали, что физические явления с высокой точностью можно описать с помощью нейросетей. — Использование генеративных состязательных сетей для быстрой симуляции поведения детектора безусловно поможет будущим экспериментам, — комментирует один из авторов исследования, доцент факультета компьютерных наук ВШЭ Денис Деркач. — По сути, мы использовали наиболее современные методы обучения, доступные в науке о данных, и наши знания о физике детекторов. Этому способствовал смешанный состав нашего коллектива, состоящий из дата сайентистов и физиков. Исследование было проведено при финансовой поддержке гранта РНФ 17-72- 20127 «Поиск новои? физики в данных LHCb с применением методов глубокого обучения».
Источник: iq.hse.ru Комментарии: |
|