Информационная война. Тотальный контроль |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-03-23 14:00 «Многое из того, что я видел в Женеве, реально избавило меня от иллюзий о том, как действует моё правительство и что это приносит миру. Я понял, что я — часть того, что приносит намного больше вреда, чем пользы» Эдвард Сноуден В своих сенсационных разоблачениях, Эдвард Сноуден, кроме всего прочего, раскрыл информацию о системах интеллектуального анализа данных. Их АНБ использует, в частности, для того чтобы систематизировать данные о странах, в которых ведется электронная слежка. Среди разглашенных Сноуденом материалов – созданная Boundless Informant цифровая карта с указанием стран-объектов для электронной разведки. Судя по этой карте, активнее всего американские спецслужбы действуют в Иране, Пакистане и Иордании. Но и в собственной стране АНБ ведет массовую цифровую слежку в рамках секретной государственной программы PRISM по перехвату телефонных переговоров и электронных коммуникаций. Итак, как это работает? Система интеллектуального анализа данных. Вне всякого сомнения, это – широкий шаг в будущее. А все инновации в нашем мире проходят, в первую очередь, через военное применение. Интеллектуальный анализ данных — одно из самых передовых направлений использования искусственного интеллекта. Этот термин является весьма неточным переводом терминов Data Mining и Knowledge Discovery in Databases (DM&KDD). Более точный перевод — «добыча данных» и «выявление знаний в базах данных». Data Mining — это процесс обнаружения в необработанных данных (row data) раннее неизвестных, нетривиальных, практически полезных, доступных интерпретации знаний (закономерностей), необходимых для принятия определенных решений Появление технологий DM&KDD было естественным процессом. В компьютерных базах данных, накапливались огромные объемы информации. Эти объемы стало фактически невозможно хранить и тем более – эффективно ими пользоваться. По крайней мере, традиционными методами. Следует понимать, что сегодня происходит стремительное развитие вычислительной техники и программных средств для представления и обработки данных. Объемы накопленных данных постоянно требуют модификации, так как происходит перманентная смена аппаратного и программного обеспечения БД. Потери и искажение информации становятся неизбежными. Одним из способов для преодоления этих проблем является создание информационных хранилищ данных, доступ к которым не будет зависеть от темпорального изменения данных и от используемого программного обеспечения. Другой подход ориентирован на компрессию больших объемов данных путем нахождения некоторых общих закономерностей в накопленной информации. Этот подход напрямую связан с разработками в области искусственного интеллекта. Этот подход связан с проблемой приобретения новых знаний. Наличие хранилища данных — необходимое условие для успешного проведения всего процесса выявления знаний в базах данных(KDD). Хранилищем данных называют предметно-ориентированное, интегрированное, темпоральное, неизменяемое собрание данных, используемых для поддержки процесса принятия решений. Предметная ориентация означает, что данные объединены в категории и хранятся в соответствии с теми областями, которые они описывают. Такой принцип хранения гарантирует, что отчеты, сгенерированные различными аналитиками, будут опираться на одну и ту же совокупность данных. Темпоральное – значит атрибут времени всегда явно присутствует в структурах хранилищ данных. Данные, занесенные в хранилище, уже не изменяются в отличие от оперативных систем, где присутствуют только последние, постоянно изменяемые версии данных. Для хранилищ данных уже характерны операции добавления, а не модификации данных. Выведенные из данных закономерности и правила теперь можно применять для описания существующих соотношений объектов и их закономерностей. Также их можно эффективно использовать для прогнозирования последствий принятия решений. В технологиях DM&KDD используются различные математические методы и алгоритмы. Классификация — инструмент обобщения. Она позволяет перейти от рассмотрения единичных объектов к обобщенным понятиям, которые характеризуют совокупности объектов и являются достаточными для распознавания объектов, принадлежащих этим совокупностям (классам). Суть процесса формирования понятий заключается в нахождении закономерностей, свойственных классам. Для описания объектов используются множества различных признаков (атрибутов). Кластеризация — это распределение информации из БД по кластерам (сегментам) с одновременным определением этих групп. Для проведения анализа здесь не требуется предварительного задания классов. Регрессионный анализ. Если отношения между атрибутами объектов в базе данных выражены количественными оценками, уравнения регрессии позволяют вычислять значения зависимых атрибутов по заданным значениям независимых признаков. Прогнозирование темпоральных рядов является инструментом для определения тенденций изменения атрибутов объектов с течением времени. Это позволяет прогнозировать значения исследуемых характеристик. Ассоциация позволяет выделить устойчивые группы объектов, между которыми существуют неявно заданные связи. Частота появления отдельного предмета или группы предметов, выраженная в процентах, называется распространенностью. Низкий уровень распространенности (менее одной тысячной процента) говорит о том, что такая ассоциация не существенна. Последовательность — это метод выявления ассоциаций во времени. В данном случае определяются правила, которые описывают последовательное появление определенных групп событий. К интеллектуальным средствам DM&KDD относятся нейронные сети, деревья решений, индуктивные выводы, методы рассуждения по аналогии, нечеткие логические выводы, генетические алгоритмы, алгоритмы определения ассоциаций и последовательностей, анализ с избирательным действием, логическая регрессия, эволюционное программирование, визуализация данных. Все эти методы применяются в различных комбинациях. Нейронные сети относятся к классу нелинейных адаптивных систем с архитектурой, условно имитирующей нервную ткань, состоящую из нейронов. Математическая модель нейрона представляет собой некий универсальный нелинейный элемент, допускающий возможность изменения и настройки его характеристик. Это помогает системе быть по-настоящему интеллектуальной, то есть – самообучающейся. Деревья решений — метод структурирования задачи в виде древовидного графа, вершины которого соответствуют продукционным правилам, позволяющим классифицировать данные или осуществлять анализ последствий решений. Индуктивные выводы позволяют получить обобщения фактов, хранящихся в базе данных. В процессе индуктивного обучения может участвовать специалист, поставляющий гипотезы. Такой способ называют обучением с учителем. Рассуждения на основе аналогичных случаев (Case-based reasoning — CBR) основаны на поиске в БД ситуаций, описания которых сходны по ряду признаков с заданной ситуацией. Принцип аналогии позволяет предполагать, что результаты похожих ситуаций также будут близки между собой. Нечеткая логика применяется для обработки данных с размытыми значениями истинности, которые могут быть представлены разнообразными лингвистическими переменными. Генетические алгоритмы входят в инструментарий DM&KDD как мощное средство решения комбинаторных и оптимизационных задач. Они часто применяются в сочетании с нейронными сетями. Логическая (логистическая) регрессия используется для предсказания вероятности появления того или иного значения дискретной целевой переменной. Логическая регрессия — это, с одной стороны, инструмент классификации, который используется для предсказания значений категориальных переменных, с другой стороны — регрессионный инструмент, позволяющий оценить степень влияния входных факторов на результат. Эволюционное программирование — самая новая и наиболее перспективная ветвь DM&KDD. Суть метода заключается в том, что гипотезы о форме зависимости целевой переменной от других переменных формулируются компьютерной системой в виде программ на определенном внутреннем языке программирования. Если это универсальный язык, то теоретически он способен выразить зависимости произвольной формы. Процесс построения таких программ организован как эволюция программ. В современных военных средствах DM&KDD постоянно используются комбинированные методы. Как это используется? Сложнейшие интеллектуальные системы используются АНБ США и другими спецслужбами для обработки огромных массивов информации, которая поступает в хранилища данных в автоматическом режиме. Да, прошли те времена, когда слежка велась за конкретным объектам. Когда использовались электронные жучки и методы «прямой прослушки». Эдвард Сноуден однажды сказал – «им не нужны Вы, им нужен Ваш смартфон». И он был прав. Как мы уже говорили в прошлой статье, с развитием коммуникаций мы получили неограниченные средства общения, но потеряли личную свободу. Система сама проводит анализ значимости объектов. Сама решает, к кому необходимо проявлять особое внимание. Вычислительные системы стали по-настоящему интеллектуальными. Представьте себе огромный конвейер автомобильного завода. Весь процесс сборки, сварки, тестирования изделий полностью автоматизирован. На выходе завода мы получаем из тысяч различных деталей готовый автомобиль. Так же действуют и системы АНБ. Из разрозненной информации, которая поступает в базы со всего мира, получаются готовые к использованию, систематизированные блоки. Самое прогрессивное в этой технологии то, что сбором информационного сырья так же занимается сама система в практически полностью автоматизированном режиме. Теперь, когда мы знаем о работе системы, то с легкостью можем понять, почему в России вышла деректива, запрещающая использование военнослужащими и работниками силовых структур любых «гаджетов», включая смартфоны, ноутбуки, планшетные компьютеры и другие прелести цивилизации в служебное время. Разрешены только простейшие сотовые телефоны, называемые в народе «кнопочными». Но дело в том, что сама система сотовой связи так же имеет свои уязвимости. Скорее всего, для нужд военных и силовиков со временем будут формироваться собственные сети связи с собственными стандартами кодирования потоков данных. Рассмотренные нами системы позволяют эффективно собирать, отфильтровывать, систематизировать и обрабатывать большие объемы информации. Но подобные системы в своей эволюции уже достигли того уровня, когда становится возможным генерировать вредоносную информацию с ее трансляцией на территории условного противника. Нарушать коммуникации, банковскую систему, вносить в соцсети вредоносную информацию, сеять панику среди мирного населения. Но об этом развитии технологии мы поговорим в следующей статье. Источник: news-front.info Комментарии: |
|