Астроцит или нейрон? |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-03-10 07:36 Группа исследователей из США, Италии, Франции и Великобритании на днях опубликовала в журнале Cerebral Cortex результаты детального исследования того, как переключается программа образования новых клеток между нейронами и астроцитами. Оказалось, что главную роль в определении судьбы стволовой клетки (станет ли она родоначальником нейронов, астроцитов или так и останется стволовой) играет белок Foxg1, причем механизм его действия одинаков у мыши и человека. Зеленым показаны нейрональные стволовые клетки, а красным – зрелые астроциты, звездчатые глиальные клетки нервной системы. Credit: Cerebral Cortex Development Lab, SISSA В ходе развития головного мозга и астроциты, и нейроны происходят из одной и той же группы стволовых клеток-предшественников коры мозга. Как определяется судьба стволовой клетки – станет ли она нейроном, астроцитом или останется после деления стволовой клеткой? Согласно недавнему исследованию, один из ключевых белков, определяющих судьбу стволовой клетки – это белок Foxg1. Высокий уровень его экспрессии блокирует превращение стволовой клетки в астроцит, однако способствует самообновлению популяции стволовых клеток и образованию нейронов. Разумеется, Foxg1 не действует в одиночку: он управляет уровнем синтеза в клетке определенных транскрипционных факторов, а именно Couptf1, Sox9, Nfia и Zbtb20. Ранее было известно, что в регуляторных областях генов этих транскрипционных факторов есть последовательности, которые распознаетFoxg1. Исследователи показали, что Foxg1 подавляет экспрессию этих транскрипционных факторов и блокирует превращение клетки в астроцит. Выяснилось также, что Foxg1 подавляет экспрессию белков, которые образуются в астроцитах и специфичны для клеток этого типа, а именно GFAP, S100b и Aqp4. Более того, Foxg1 не только непосредственно подавляет экспрессию «астроцитных» генов, но и опосредованно влияет на них, изменяя активность других белков, регулирующих их экспрессию. Когда же приходит время появляться астроцитам, уровень экспрессии Foxg1 в стволовых клетках падает. Перечисленные выше результаты получены преимущественно на мышиных моделях. Однако, они не уникальны для грызунов: ученые показали, что те же механизмы переключения между образованием нейронов и астроцитов имеют место и в случае стволовых клеток коры головного мозга человека. Так что, похоже, за переключением между нейронами и астроцитами стоит консервативный (по крайней мере для млекопитающих) механизм, главное действующее лицо которого – белок Foxg1. Текст: Елизавета Минина Foxg1 Antagonizes Neocortical Stem Cell Progression to Astrogenesis by Falcone, C., Santo, M., Liuzzi, G., Cannizzaro, N., Grudina, C., Valencic, E., … Mallamaci, A. in Cerebral Cortex (2019)., 1–16. https://doi.org/10.1093/cercor/bhz031 Источник: neuronovosti.ru Комментарии: |
|