Основы машинного обучения простым языком |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-02-26 13:29 Перевод заметки аналитика фармацевтической компании Pfizer Кайла Галлатина. В диалоге об искусственном интеллекте трудно найти середину: СМИ пишут о сенсациях, даже когда разработка не заслуживает внимания, а научная литература порой сбивает с толку своим языком самых мотивированных исследователей. На деле всё гораздо проще. Чтобы в общих чертах понять принцип работы ИИ, рядовому пользователю нужно вспомнить школьный курс математики. ИИ — любой алгоритм, подражающий человеческому интеллекту, будь то бот в видеоигре или движок AlphaGo. Машинное обучение же позволяет машине «учиться» на данных реального мира, а не действовать в рамках установленных правил. Но что же значит «учиться»? Больше всего мне нравится такое объяснение: машинное обучение есть функция y = mx + b . Мы можем показать компьютеру входные (x) и выходные (y) данные, а он вычислит, как они связаны. Действительно, нынешний ИИ — чистая математика, иногда очень сложная, требующая обширных знаний в информатике, статистике. Но в конечном итоге он сводится к математической функции.
Взглянем на таблицу ниже. Чтобы получить y из x, умножим x на единицу (значение m) и прибавим единицу (значение b). Таким образом, функция принимает вид y = 1x + 1 . Располагая значением x, мы сможем определить значение y для всех четырёх примеров. Теперь нарисуем график: Самый замысловатый этап — научить компьютер определению наиболее подходящей функции для описания данных. Человеку не по силам математика, которая по силам компьютеру Стоит помнить: чтобы отыскать качественное отношение, требуется достаточное количество информации, в противном случае оно будет слишком неточным. Если для x и y дана лишь одна точка, верная функция будет иметь единственный вид. Но в нашем примере, когда x = 1, а y = 2, функция может принимать вид y = 2x, y = x + 1, y = ([x+1]*5 – 9)? + 1 и так далее. К тому же данные далеко не всегда идеальны. На графике ниже компьютер определил несколько функций, описывающих наибольшее число точек. Стало быть, модель хороша настолько, насколько хороши обучающие данные. Функция y = 1x + 1 проста. Но что, если на входе не одна переменная? Что, если на y влияют x?, x?,…x???? Человек не может разом охватить миллионы точек данных и вывести функцию, описывающую результат. Эту задачу мы перекладываем на компьютеры. На практике Я работаю в фармацевтике, поэтому давайте представим, что у нас есть база данных, в которой две переменные на входе — радиус и периметр опухоли — и два возможных вывода, качества опухоли: доброкачественная или злокачественная. Подставим значения в формулу, где:
Как теперь выглядит наше линейное уравнение: диагноз = (нечто1*радиус) + (нечто2*периметр) + b. Похоже на формулу y = mx + b, не так ли? Тут-то мы и выходим за пределы человеческих возможностей. Вместо того чтобы самостоятельно высчитывать, на какое нечто нужно помножить переменные для точного диагноза, мы ставим задачу алгоритму. Вот, собственно, что такое машинное обучение. Источник: vc.ru Комментарии: |
|