Осцилляторную нейронную сеть научили распознавать образы |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-02-12 20:05 Российские ученые предложили новый тип осцилляторной нейронной сети и научили ее распознавать простейшие образы. Предположительно, такие сети с регулируемым синхронным состоянием отдельных нейронов работают так же, как нейроны в живом мозге. Исследование поддержано Российским научным фондом (РНФ). Статья ученых опубликована в журнале Electronics. Credit: Stockvault Осцилляторная нейронная сеть — это сложное сплетение взаимодействующих между собой элементов (осцилляторов), которые способны принимать и передавать колебания определенной частоты. Получая сигналы различных частот от предшественников, искусственный нейрон-осциллятор может согласовывать свой ритм с этими колебаниями. В результате в сети часть элементов синхронизирована между собой (периодически и одновременно активируется), а часть — нет. Таким образом, формируется пространственно-временная картина распределения синхронизации. Считается, что подобные процессы ответственны за обработку и передачу информации, происходящие в мозге человека, и поэтому представляют особый интерес для изучения. Ученые кафедры электроники и электроэнергетики ПетрГУ создали нейронную сеть, распознающую простейшие образы, на основе осцилляторов из структур двуокиси ванадия. Физики разработали методику регистрации синхронизации, обладающую высокой чувствительностью и избирательностью. Применяя ее на практике, возможно создать сеть, способную распознавать образы подобно тому, как это делают биологические нейронные системы. В этой работе в качестве входных образов использовали таблицы размерности 3?3, передаваемые в сеть за счет изменения питающих токов, которые, в свою очередь, меняли частоты колебаний осцилляторов. В результате динамика связанной сети реагировала на каждый полученный образ. Идея заключалась в том, что, подобрав ключевые параметры сети, можно обучить систему синхронизироваться только для определенного входного образа, а значит — распознавать его. В качестве регистрируемого сигнала выбрали состояние синхронизации выходного нейрона-осциллятора относительно ритма основного нейрона-осциллятора. Авторы показали, что синхронизация может наблюдаться не только на основных частотах, но и на их кратных долях (субгармониках). Имея одновременно несколько состояний синхронизации, нейрон становится мультиуровневым. Так, осцилляторная сеть из малого количества нейронов может выполнять сложные операции, к примеру, по распознаванию речи, изображений и видео, а также способна к решению задач прогнозирования, оптимизации и управления. Используя это свойство, исследователям удалось настроить сеть так, что разные входные образы вызывали различную синхронизацию осцилляторной сети. Оказалось, что сеть способна распознавать одновременно до 14-ти фигур (размерности 3?3) из 102 возможных вариантов, имея при этом всего один осциллятор.
Текст: РНФ A Model of an Oscillatory Neural Network with Multilevel Neurons for Pattern Recognition and Computing Electronics 2019, 8(1), 75; https://doi.org/10.3390/electronics8010075 Источник: neuronovosti.ru Комментарии: |
|