НЕЙРОСЕТИ НАУЧИЛИСЬ УЛУЧШАТЬ ГРАФИКУ В ИГРАХ

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Не так давно на просторах сети появились гайды по использованию нейросетей на основе технологии GAN для улучшения качества фотографий и текстур в играх. GAN — технология, которая самостоятельно заменяет оригинальную текстуру на более качественную и детализированную.

Один из самых популярных вариантов этой технологии — нейросеть ESRGAN. Суть ее работы проста: она увеличивает исходное изображение в 2, 4, 8 или 16 раз, а затем на основе самообучения «дорисовывает» картинку и добавляет реалистичные детали.

Однако самообучение нейросетей не идеально и иногда дает сбой, приводя к несущественным багам. Нейросети уже умеют повышать качество текстур, правильно «переводить» разрешение и соотношение сторон до FullHD, использовать современные технологии сглаживания.

Кроме того, алгоритм GAN избавляет мододелов от необходимости вручную заменять текстуры и сохраняет оригинальную стилистику игры, меняя качество, а не форму картинки.

Ремастеринги не нужны?

Если использование алгоритмов нейросетей — операция косметическая, то ремастеринг — работа куда более серьезная.

За последние годы мы получили несколько отличных ремастеров.

В вышедшем недавно ремастере Resident Evil 2 разработчики потрудились над тем, чтобы адаптировать классическую игру под требования современных геймеров.

Capcom переработала оригинал графически: переписала игру на новом движке, использовала живых актеров и захват движений, сделала акцент на создании реалистичной крови и атмосферы мрачности при помощи работы с освещением. Кроме того, разработчики добавили вид от третьего лица, переработали «боевку», расширили локации, увеличили в два раза время прохождения игры.

В отличие от нейросетей, которые решают проблемы исключительно технического характера, подобные ремастеры — чистое творчество. Ремастер — это игра, которую от начала и до конца отполировали вручную: улучшили графику, звук, прокачали визуал, причем затратили на это немалые средства.

Продажи топовых ремастеров и широкий к ним интерес показывают, что люди готовы тратить на это деньги.

GAN-технология сегодня способна лишь повысить качество картинки и добавить деталей к графике. В корне изменить игру нейросети не способны.

Графика после подобных модификаций выглядит симпатично, никуда не пропадает устаревшая физика или полигоны. С этим нейросети пока бороться не умеют. Тем не менее интерес к нейросетям велик, ведь они уже доказали свою полезность. Вероятным здесь кажется сценарий, при котором крупные компании признают эту технологию и научатся включать ее при ремастеринге, ведь самообучающаяся система может избавить разработчиков от монотонной работы.

Об интересе к нейросетям уже объявила Nvidia, которая в 2017 году запустила бету своей программы GameWorks: Materials & Textures по совершенствованию графики на основе машинного обучения. Алгоритм утилиты схож с алгоритмами GAN: он увеличивает разрешение текстур и фотографий в 2 и 4 раза, генерирует на основе фото поверхности из реального мира текстуру в игре, берет текстуру или фотографию и выдает ее органическую вариацию.

В Nvidia рассказали об уже имеющемся опыте применения нейросетей при разработке игр. Совместно с Remedy Entertainment, компания провела серию экспериментов по внедрению системы машинного обучения в процесс написания лицевых анимации. Так, нейросеть взяла базу уже имеющихся анимаций, созданных в Remedy, и, анализируя видео с живым актером, буквально научилась его эмоциям и сгенерировала новые.

Применение этой технологии, таким образом, позволит разработчикам «оживлять» мир вокруг протагониста. Вместо того, чтобы часами работать с актерами и переносить их мимику в игру, разработчики с помощью нейросетей смогут на основе лишь аудиозаписей создавать лицевую анимацию для множества NPC в течение нескольких минут.

По заверениям программистов из Remedy, использование нейросетей поможет сократить на 80% время на создание лицевых анимаций — одного из самых трудоемких и дорогостоящих элементов при разработке игр.

Несмотря на то, что крупные компании стали обращать больше внимания на нейросети, полноценный переход к машинному обучению при разработке игр уже сегодня под вопросом. Однако пока идут эксперименты над нейросетью и видно, что они удачны, это позволяет говорить о том, что процесс внедрения машинного обучения идет и у него есть будущее.

Что же касается работы непосредственно с графикой, то пока моддеры улучшают картинку в современных играх без помощи всяких нейросетей. Удачные результаты моддинга игр нейронными сетями хотя и говорят о перспективах подобной технологии, но более убедительных и прорывных результатов пока нет.

Даже несмотря на заметное улучшение качества картинки, нейронные сети сейчас не могут реально поднять уровень графики в игре. Такие моды убирают размытие текстур, повышают четкость изображения, но модельки продолжают выглядеть угловато. Улучшенная таким образом игра походит просто на прокаченную версию исходника, а не на современный играбельный продукт.

То, что выдает в итоге ремастеринг, очевидно, отличается более глубокой прокачкой графики. Нейросети в этом отношении отстают, внося лишь поверхностные изменения текстур и не более. Тем не менее эксперименты, как те, что проделывали Nvidia и Remedy, демонстрируют большой потенциал технологии, позволяя оптимистично смотреть на ее возможности в будущем.

Говорить о возможностях нейросетей, которые по щелчку мыши научатся превращать старую игру в сверхреалистичное чудо, пока преждевременно. Сегодня они могут прокачивать текстуры в старых играх, в то время как ремастеры продолжат выходить и приносить разработчикам деньги. Наиболее вероятный вариант в близкой перспективе состоит в том, что компании начнут прибегать к помощи машинного обучения, чтобы решать конкретные задачи при разработке игр, минимизируя затраты средств и человеческих усилий на создание того, что уже умеют делать нейронные сети или чему их научат.

Если тебе понравилась статья, то не забудь подписаться, поставить лайк, рассказать о нас друзьям и написать комментарий.


Источник: m.vk.com

Комментарии: