Искусственный интеллект научился скрытно жульничать. |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-01-02 00:17 Группа ученых из Google и Стенфордского университета использовали нейронную сеть для преобразования воздушных фотографий в навигационные карты, и обратно (обратное преобразования использовало только полученную ранее карту, без доступа к исходному снимку). Это позволило бы сервисам вроде Google Maps более быстро создавать и обновлять карты из снимков с воздуха. Обратное преобразование же было нужно, чтобы было легче сверять результат с оригиналом, и тем самым проверять качество работы нейронной сети. Ученые отметили, что программа работает хорошо... слишком хорошо. На воссозданном снимке были детали, которые должны были потеряться в результате первичного преобразования снимка в карту. Например, уличные фонари и прочие элемента ландшафта, которые не были нанесены на карту, волшебно возвращались на место при обратном преобразовании. В итоге оказалось, что нейронной сети, вместо того чтобы придумывать, как лучше преобразовать "чистую" карту в спутниковый снимок, оказалось легче вставлять скрытые "шпаргалки" в изначально созданную карту, которые содержали скрытую информацию для обратного преобразования - такую, как мельчайшие изменения в цвете пикселей, незаметную глазу человека. На предыдущей картинке показана разница между "обычной" картой сделанной в Google Maps (a), и картой нейронной сети, созданной из воздушного снимка (b). Между первой и второй есть зашифрованная информация (c), используя которую, можно преобразовать карту обратно в снимок (d). Разница (с) искуственно преувеличена для анализа - в реальных снимках она настолько незаметна, что даже в выделенном формате человек бы ее не заметил. Сам способ не является новым - подобная стеганография давно используется людьми, от скрытых строчек в письмах шпионов, до цифровых водяных знаков в фотографиях. Примечательно же то, что использованию стеганографии нейронную сеть не учили и не ожидали - она до этого способа дошла сама. Более того, поскольку для проверки качества карты требовалось воссоздать снимок именно из карты, то придуманное "решение" нейронной сети оказалось непригодным - если снимок воссоздавался из скрытой информации, то он мог бы воссоздаться правильно, даже если бы полученная карта оказалось неправильной. Таким образом, этот способ является не "креативным решением", а именно шпаргалкой - то есть возможностью пройти тест, не выучив нужный материал. Источник: m.vk.com Комментарии: |
|