11 JavaScript-библиотек для машинного обучения |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-01-26 13:30 Javascript-библиотеки используют для определения, обучения и запуска моделей глубокого обучения, визуализации данных полностью в браузере. Они значительно облегчают жизнь разработчику. Ниже представлены изящные библиотеки, которые объединяют Javascript, машинное обучение, глубокие нейронные сети и даже NLP. 1. Brain.js Brain.js — Javascript библиотека для искусственных нейронных сетей, заменяющая «мозговую» библиотеку, которая предлагает разные типы сетей в зависимости от конкретных задач. Используется с Node.js или в браузере. Здесь представлено демо тренировки сети для распознавания цветовых контрастов. 2. Synaptic Synaptic — Javascript библиотека для нейронных сетей для node.js и браузера, которая позволяет обучать архитектуры нейронных сетей первого и второго порядков. Проект содержит несколько встроенных архитектур — многослойный перцептрон, многослойная сеть долгой краткосрочной памяти, LSM (liquid state machine) и тренер (trainer), способный обучать сети. 3. Neataptic Эта библиотека предоставляет возможность быстро осуществлять нейроэволюцию и обратное распространение для браузера и Node.js. Библиотека содержит несколько встроенных сетей — перцептрон, LSTM, GRU, Nark и другие. Для новичков есть туториал, помогающий реализовать тренировку сети. 4. Conventjs Эта популярная библиотека, разработанная PhD студентом из Стэнфорда Андреем Карпатым, который сейчас работает в Tesla. Хотя она не поддерживается последние 4 года, Conventjs остается одним из самых интересных проектов в этом списке. Conventjs представляет из себя написанную на Javascript реализацию нейронных сетей, поддерживающую распространенные модули — классификацию, регрессию, экспериментальный модуль обучения с подкреплением. С помощью этой библиотеки можно даже обучать сверточную нейросеть для обработки изображений. 5. Webdnn Webdnn — японская библиотека, созданная для быстрой работы с предобученными глубокими нейросетевыми моделями в браузере. Хотя запуск DNN (Глубокой нейронная сети) в браузере требует больших вычислительных ресурсов, этот фреймворк оптимизирует DNN модель так, что данные модели сжимаются, а исполнение ускоряется при помощи JavascriptAPI, таких как WebAssembly и WebGPU. 6. Tensorflow.js Библиотека от Google (преемница популярной deeplearnjs) дает возможность обучать нейронные сети в браузере или запускать предобученные модели в режиме вывода. Создатели библиотеки утверждают, что она может быть использована как NumPy для веба. Tensorflow.js с простым в работе API может быть использована в разнообразных полезных приложениях. Библиотека также активно поддерживается.
7. TensorFlow Deep Playground Deep playground — инструмент для интерактивной визуализации нейронных сетей, написанный на TypeScript с использованием d3.js. Хотя этот проект в основном содержит самую базовую площадку для tensorflow, он может быть использован для различных целей, например, в качестве очень выразительного обучающего инструмента. 8. Compromise Compromise — популярная библиотека, которая позволяет осуществлять обработку естественного языка (NLP) при помощи Javascript. Она базовая, компилируется в единственный маленький файл. По некоторым причинам, скромного функционала вполне хватает для того, чтобы сделать Compromise главным кандидатом для использования практически в любом приложении, в котором требуется базовый NLP. 9. Neuro.js Этот проект представляет собой Javascript библиотеку глубокого обучения и обучения с подкреплением в браузере. Из-за реализации полнофункционального фреймворка машинного обучения на основе нейронных сетей с поддержкой обучения с подкреплением, Neuro.js считается преемником Conventjs. 10. mljs Это группа репозиториев, содержащая инструменты для машинного обучения для Javascript, разработана группой mljs. Mljs включает в себя обучение с учителем и без, искусственные нейронные сети, алгоритмы регрессии и поддерживает библиотеки для статистики, математики тому подобное. Здесь можно найти краткое введение в тему. 11. Mind Mind — гибкая нейросетевая библиотека для Node.js и браузера. Mind учится предсказывать, выполняя матричную обработку тренировочных данных и обеспечивая настраиваемую топологию сети. Можете использовать уже существующие разработки, что может быть весьма полезно для ваших приложений. Достойны упоминания: Natural Активно поддерживаемая библиотека для Node.js, которая обеспечивает: токенизацию, стемминг (сокращение слова до необязательно морфологического корня), классификацию, фонетику, tf-idf, WordNet и другое. Incubator-mxnet MXnet от Apache — фреймворк глубокого обучения, который позволяет на лету смешивать символьное и императивное программирование со слоем оптимизации графа для достижения результата. MXnet.js обеспечивает API для глубокого обучения в браузере. Keras JS Эта библиотека запускает модели Keras в браузере с поддержкой GPU при помощи технологии WebGL. Так как Keras использует в качестве бэк-енда различные фреймворки, модели могут быть обучены в TensorFlow, CNTK, а также и в других фреймворках. Deepforge Deepforge — среда разработки для глубокого обучения, которая позволяет быстро конструировать архитектуру нейронной сети и пайплайны машинного обучения. В Deepforge содержится также встроенная функция контроля версий для воспроизведения экспериментов. Сюда стоит заглянуть. Land Lines Land Lines — не столько библиотека, сколько очень занимательная веб-игра на основе эксперимента Chrome от Google. Нельзя сказать, для чего нужна эта штука, но она позабавит хотя бы 15 минут. Что дальше? Очевидно, Javascript еще не становится основным языком для машинного обучения. Однако, общие проблемы, такие как производительность, манипуляции с матрицами и обилие полезных библиотек, постепенно преодолеваются, уменьшая разрыв между приложениями и машинным обучением. Источник: neurohive.io Комментарии: |
|