В Гарварде создали революционную схему светового квантового компьютера |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-12-10 10:00 Сильное взаимодействие порождает сильные помехи. Поэтому в Гарварде проверяют новый подход к созданию стабильных квантовых компьютеров — организацию взаимодействия между двумя кубитами при помощи частиц света, которые друг другу не мешают. В мире квантовых компьютеров самое главное — четкое взаимодействие между кубитами, вычислительными единицами. На практике, однако, оно не ограничивается кубитами и распространяется на окружающую среду. Так возникают помехи, разрушающие квантовые состояния кубитов, сообщает Phys.org. Для того чтобы справиться с этой проблемой, Раффин Эванс, выпускник Гарвардского университета из лаборатории Михаила Лукина, обратился к фотонам — частицам, взаимодействие между которыми отсутствует. Преимущество своего подхода Эванс объясняет так: «Нетрудно создать систему с очень сильными взаимодействиями, но сильные взаимодействия могут также вызывать шум и помехи со стороны окружающей среды. Так что приходится содержать среду в абсолютной чистоте. Это крайне сложно. Мы же действуем в совершенно ином режиме. Мы используем фотоны с их слабым взаимодействием». Эванс и его коллеги начали с создания двух кубитов, помещенных внутрь фотонной кристаллической полости, которая действует как два поставленных лицом к лицу зеркала. Один из атомов выделяет фотон, тот начнает двигаться между зеркалами и, в какой-то момент, его поглощает другой атом. Вероятность того, что свет вступит во взаимодействие с атомом за один проход, чрезвычайно мала. Но если частица отскочит от поверхности кристалла около 10?000 раз, это произойдет почти наверняка. Главная особенность этого исследования в том, что ученые оперируют фотонами в оптических частотах — их используют, например, для передачи данных по волоконному кабелю. На этих частотах взаимодействие очень слабое, поэтому и помех практически не бывает — а это именно то, что нужно для создания надежных и протяженных квантовых сетей. А поскольку схема воссоздана в наномасштабе, в перспективе на единственном микрочипе можно разместить множество таких устройств. Есть и существенный минус: система работает только при сверхнизких температурах. Но даже несмотря на это, она проще, чем подходы, требующие лазерного охлаждения и оптических ловушек для атомов. Недавно британские физики открыли новую гибридную систему для создания сверхбыстрых фотонных компьютеров. Найденные ими частицы — поляритоны Дирака — обладают некоторыми свойствами графена, и ученые смогли их настроить. Источник: hightech.plus Комментарии: |
|