Суперкомпьютер для радиологов

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


2018-12-16 07:40

ии в медицине

Компания NVIDIA уже давно перестала ассоциироваться только с игровыми компьютерами и видеокартами — в последние несколько лет она активно занимается исследованиями в области ускорения вычислений, развитием искусственного интеллекта и автономного вождения. Еще одна сфера применения технологий NVIDIA — здравоохранение: вот уже несколько лет компания использует свои суперкомпьютеры для улучшения методов медицинской визуализации. В рамках конференции GTC Europe 2018 мы поговорили с Кимберли Пауэлл, вице-президентом NVIDIA по решениям для здравоохранения, рассказавшей нам о применении современных технологий для улучшения результатов медицинской диагностики.

N + 1: В обывательском понимании компания NVIDIA выпускает видеокарты и процессоры, но в последние годы она также занимается исследованиями искусственного интеллекта и беспилотного транспорта. Теперь NVIDIA ведет разработки и в области здравоохранения. А какие именно?

Кимберли Пауэлл: Мы занимаемся здравоохранением уже больше десяти лет, и наш основной фокус — это медицинская визуализация (речь идет о получении изображений с помощью технологий рентгенографии, компьютерной, магнитной томографии и ряда других, а также их последующего анализа. — Прим. N + 1). В последние годы эти методики стали очень технологически развитыми: к примеру, для того, чтобы создать качественное трехмерное изображение внутренних органов, необходимы довольно сложные алгоритмы.

Скажем, мы хотим снизить дозу радиации, которую получает пациент, но это приведет к тому, что изображение будет очень низкого качества. При этом существуют компьютерные методы, которые позволяют вернуть качество. Именно этим мы и занимаемся последние десять лет совместно с медицинскими центрами: графические процессоры NVIDIA используются для реконструкции изображений.

Кимберли Пауэлл на конференции GTC Europe (Мюнхен, 10 октября 2018 года)

Можете рассказать о своих последних крупных проектах и ближайших планах в области визуализации?

Наш последний крупный проект — сотрудничество с Королевским колледжем Лондона. Университет тесно работает с несколькими больницами, входящими в систему под контролем Национальной службы здравоохранения Великобритании. Их руководство обеспокоено тем, что в популяции возрастает доля пожилых людей и, соответственно, также растет число зарегистрированных хронических заболеваний. При этом диагностика требует использования различных методов визуализации, а объемы полученных данных с каждым годом возрастают на 10-15 процентов. Однако число профессионалов, занятых в этой сфере, например радиологов (речь идет о специалистах, занятых в области медицинской визуализации и диагностики. — Прим. N + 1), увеличивается всего на один процент.

Задача, таким образом, заключается в разработке методов, которые позволили бы ограниченному числу радиологов взаимодействовать с большим количеством данных. Наша работа здесь заключается в том, чтобы помочь в создании алгоритмов для обработки данных трехмерной визуализации — очень важной для радиологов. Задача эта очень затратная в плане вычислений, поэтому сейчас Королевский колледж использует DGX-2 (первая двухпетафлопсная система NVIDIA с 16 взаимосвязанными графическими процессорами. — Прим. N + 1) — один из самых продвинутых на сегодняшний день суперкомпьютеров для обучения искусственного интеллекта.

Мы также планируем создавать специальные средства, которые позволят радиологам и разработчикам пользоваться трехмерной визуализацией для различных целей.

Кроме того, мы активно применяем так называемое федеративное машинное обучение: когда используются данные о пациентах, остро встает вопрос о безопасности. Именно поэтому мы стараемся сделать так, чтобы алгоритмы обучались, но данные при этом не распространялись (федеративное машинное обучение, разработанное в Google, позволяет использовать единую модель для прогнозирования при машинном обучении, но при этом не делиться первично использованными для обучения данными. — Прим N + 1). Мне кажется, что это та проблема, которую пытается решить весь технологический мир, но конкретно мы нацелены на то, чтобы защитить именно клинические данные.

Наконец, стоит вопрос о том, как, разработав алгоритмы, можно использовать их в дальнейшем. Для этого мы будем использовать нашу платформу Clara.

В январе в Стэнфордском университете собрали базу данных из более чем 40 тысяч рентгеновских снимков поврежденных конечностей. На этой базе данных обучили нейросеть, впоследствии доказавшую свою эффективность в определении травм конечностей и обогнавшую по этому показателю профессионального радиолога. Планируете ли вы заняться тем же самым — заменить медицинских профессионалов на искусственный интеллект?

Не думаю. Как я уже говорила, в Королевском колледже мы работаем вместе с радиологами: именно благодаря этому наше взаимодействие с медицинскими центрами настолько успешно. Визуализация — это многошаговый процесс. Если пациент чувствует себя плохо, медицинский работник заказывает, например, МРТ-исследование. Затем специальный человек проверяет работу аппарата и делает снимок, а затем уже его интерпретируют врачи. Получается некое мини-исследование по визуализации, в результате которого радиолог ставит диагноз. И путей для улучшения с помощью ИИ-алгоритмов здесь очень много.

К примеру, существует статистика, в соответствии с которой около 75 процентов всех данных при визуализации оказываются нормальными. Возможно, новые алгоритмы могут помочь с этим: отфильтровать нормальные изображения так, чтобы остались только те, которые представляют реальный интерес для радиологов: это позволит специалистам тщательнее изучать снимки и тратить больше времени на пациента. Поэтому, я думаю, что тут стоит вопрос не о том, как заменить врачей искусственным интеллектом, но, скорее — как он может им помочь.

nvidia

В радиологии и в медицинской визуализации вообще существует очень важная проблема, которая называется «удовлетворение поиска»: в случае, если специалист нашел на снимке симптомы какого-то заболевания (скажем, опухоль или перелом), он останавливается и не ищет дальше, потенциально упуская другие нарушения. Как искусственный интеллект может помочь с этим?

На сегодняшний день алгоритмы, используемые для визуализации, — даже те, которые одобрены, например, Министерством здравоохранения США и активно применяются в клиниках, — очень ограничены в плане применения и по большей части посвящены решению только одной проблемы — скажем, того же «удовлетворения поиска». Я думаю, что в будущем — и именно этим мы и занимаемся в NVIDIA — сразу несколько алгоритмов (от 10 до 50) будут использоваться одновременно, помогая в поиске самых разных проблем, которые могут возникнуть при диагностике.

В обычной ситуации врач замечает какой-то симптом и занимается поиском того, что этот симптом вызывает; но кроме этого может быть еще множество потенциальных проблем и нарушений. При этом эти проблемы упускаются: анализируя симптоматику, врач может изучать только необходимую часть из всех существующих данных, скажем, компьютерной томографии, упуская до 90 процентов всей информации, которая, пусть и не релевантна для изучаемого заболевания, но может быть важна. А вот ИИ-алгоритмы могут заняться этим, потенциально отвечая на вопрос: есть ли там что-то, о поиске чего мы даже не задумывались? Думаю, что это очень поможет в диагностике.

Какие, на ваш взгляд, существуют главные ограничения при использовании алгоритмов искусственного интеллекта в здравоохранении?

Я думаю, что самое главное ограничение — это использование алгоритмов в тех технологиях, которые уже активно применяются. Огромное количество стартапов, занимающихся автоматизацией процессов визуализации, — это хорошо и полезно, но вопрос в том, каким образом максимально эффективно внедрить алгоритмы в рабочий процесс радиологов. Мы точно не хотим повторять ошибок, которые совершались несколько лет назад при применении автоматического постановки диагноза: при статистическом анализе применения этого метода в маммографии возникало множество ошибок первого рода (ошибочное отклонение от нулевой гипотезы — Прим. N + 1). Нам, поэтому, нужно быть очень аккуратными, потому что основная задача все-таки состоит в том, чтобы облегчить работу специалистов и помочь им в постановке диагноза, а не наоборот.

Очень важная часть здравоохранения — психическое здоровье: такие заболевания порой очень сложно диагностировать даже не автоматически. Как вы думаете, могут ли современные технологии помочь в этом?

Визуализация — это невероятно полезный инструмент. Так как наблюдается рост численности стареющей популяции, то МРТ, к примеру, может помочь изучить болезнь Альцгеймера и деменцию. И здесь возникает вопрос, на который мы и пытаемся ответить: как можно использовать собранные данные и современные технологии для того, чтобы предупредить развитие неройдегенеративных заболеваний? Это же касается и анализа данных вне визуализации: к примеру, депрессию потенциально можно диагностировать, изучая различные записи о поведении и здоровье пациентов.

Повторюсь, наша задача заключается в том, чтобы ускорить процесс внедрения технологических решений в здравоохранение. В будущем будет возможность улучшить сенсоры и датчики, которые используют люди — умные часы, пульсометры и так далее — сделать их более эффективными, а также использовать полученные данные для помощи специалистам. Мы все очень этого ждем.

Беседовала Елизавета Ивтушок


Источник: nplus1.ru

Комментарии: