Нейронная сеть на Python в 15 строк кода для диагностики диабета |
||||||||||||||||||||||||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-12-21 12:00 В этой статье опишем как минимальным средствами может быть создана и обучена нейронная сеть при помощи Python и библиотеки Keras. Сегодня мы рассмотрим задачу, связанную с применением анализа медицинских данных, а именно — диагностики риска заболевания сахарным диабетом на основе состояния больного. Для этого мы напишем простую нейронную сеть, которая решает важную практическую задачу. Библиотека Keras представляет собой высокоуровневый интерфейс для создания нейронных сетей. Keras написан на Python и работает поверх таких более низкоуровневых решений, как TensorFlow, CNTK и Theano. За счет этого программный код получается не только мощным, но и крайне компактным. Экспериментальные данные, взятые из медицинского архива, представляют собой файл со значениями, разделенными запятыми, в котором каждая строка соответствует одной анкете. Подробную информацию о данных из датасета вы можете прочитать здесь. В наборе экспериментальных данных, состоящих из анонимных записей имеется девять параметров. Последний из них, целевой, показывает, наблюдался ли у пациента сахарный диабет или нет (соответственно, 1 или 0). Восемь остальных параметров также имеют численные значения:
Программный код и датасет также доступны на Github. Библиотека Keras позволяет запускать нейронные сети с минимальным количеством операций. В качестве модели нейронной сети используется последовательная Sequental из модуля keras.models с заданием слоев keras.layers типа Dense. Python
Для последующей воспроизводимости результатов зафиксируем генератор случайных чисел при помощи функции random.seed() из библиотеки numpy. Считаем данные из датасета: Python
Разделим данные на матрицу признаков X и вектор целевой переменной Y (последний столбец датасета): Python
Создаем модель нейронной сети: Python
Опишем структуру модели нейронной сети. Определим входной, выходной и скрытые слои. Наша нейронная сеть будет иметь плотную (Dense) структуру – каждый нейрон связан со всеми нейронами следующего слоя. Выходной слой будет состоять из единственного нейрона, определяющего вероятность заболевания диабетом. Слой добавляется к модели методом add(). Для входного слоя необходимо указать число признаков input_dim, равное в нашем случае 8: Python
Если наборы признаков образуют многомерную таблицу, то вместо параметра input_dim можно использовать параметр input_shape, принимающий кортеж с количеством элементов в каждом из измерений. В качестве функции активации для всех слоев, кроме выходного, будем использовать функцию ReLU. Для выходного слоя воспользуемся сигмоидной функцией для определения конечной вероятности риска заболевания. Создадим три скрытых слоя и один выходной слой нашей нейронной сети: Python
Первые числа, передаваемые Dense, это количества нейронов, экспериментально оптимизированные в результате вариации структуры нейронной сети. Вы можете изменять количество скрытых слоев и содержащихся в них нейронов, чтобы добиться лучшего качества предсказательности модели. Перед тем, как начать тренировать модель, ее нужно скомпилировать при помощи метода compile(): Python
Методу передается три параметра:
Для обучения нейронной сети применяем метод fit(): Python
Параметр epochs – «эпохи» – количество проходов нейронной сети по всем записям датасета (выбирается исходя из того, насколько быстро модель с каждым новым проходом приближается к желаемой предсказательной точности), batch_size – количество объектов выборки, берущихся за один шаг. В процессе обучения API будет выводить соответствующие строчки с величинам функции потерь и метрики для каждой из эпох. Оценим результат обучения нейронной сети. Метод evaluate() возвращает значения функции потерь и метрики для обученной модели: Python
Последняя строчка в форматированном виде выводит точность прогноза по нашей модели для заданной метрики accuracy:
Наконец, полный код нейронной сети с комментариями приведен в листинге ниже: Python
Источник: proglib.io Комментарии: |
|||||||||||||||||||||||