Искусственный интеллект и нейронные сети

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Искусственные нейронные сети (ИНС, или просто «нейронные сети») относятся к определенному типу модели обучения, которая эмулирует принцип работы синапсов в вашем мозге. Традиционные вычисления используют ряд логических операторов для выполнения задачи. Нейронные сети, с другой стороны, используют сеть узлов (которые действуют как нейроны) и аналогов синапсов (edge) для обработки данных. Входные данные проходят через систему и генерируются выходные данные.

Затем выводы сравниваются с известными данными. Например, скажем, вы хотите обучить компьютер распознавать изображение собаки. Вы пропускаете миллионы изображений собак через сеть, чтобы увидеть, какие изображения она решит принять похожими на собак. Затем человек подтверждает, какие изображения на самом деле являются собаками. Система отдает предпочтение пути в нейронной сети, который привел к правильному ответу. Со временем и спустя миллионы итераций, эта сеть в конечном итоге повысит точность своих результатов.

Отличный видеоурок за 30 минут рассказывающий основные принципы работы нейронных сетей. Очень советую посмотреть для понимания на базовом уровне.

Нейросетевые алгоритмы успешно применяются для решения сложных практических задач, традиционно считающихся интеллектуальными: распознавание лиц (и другие задачи распознавания изображений и объектов на изображении), управление беспилотными летательными аппаратами, медицинская диагностика заболеваний и т.д.

Конечно, технологии и методы искусственного интеллекта делают основной упор на ситуации, обладающие одной или несколькими следующими особенностями:

  • алгоритм решения неизвестен или не может быть использован из-за ограниченности ресурсов компьютера,
  • задача не может быть определена в числовой форме,
  • цели задачи не могут быть выражены в терминах точно определенной целевой функции-критерия.

Однако, поскольку "знания ? это формализованная информация, которую используют в процессе логического вывода", то можно сказать, что нейросеть берёт факты (фактические знания о мире, представленные в виде обучающей выборки) и в процессе обучения формирует правила ? знания, описывающие найденный нейросетью способ решения. Эти правила принятия решения можно затем извлечь из нейронной сети и записать в одном из традиционных для классических экспертных систем формализмов представления знаний (например, в виде набора продукционных правил логического вывода). Но можно просто пользоваться построенным нейросетевым представлением алгоритма принятия решения, если содержательная интерпретация его менее важна по сравнению с возможностью получения способа решения задачи.

Возможность быстрого обучения и дообучения нейросетевых экспертных систем позволяет им отражать особенности быстро меняющегося внешнего мира и оперировать актуальным знанием, тогда как традиционный путь формализации знаний людей-экспертов более длителен и трудозатратен.

Искусственный интеллект в управлении непрерывным производством

Видеозаписи выступлений и дискуссий с совместной конференции Yandex Data Factory и «Газпром нефти» по применению искусственного интеллекта для задач непрерывного производства. Конференция прошла 13 сентября 2017 года в Санкт-Петербурге.

Искусственный интеллект в управлении непрерывным производством

В рамках выступлений рассматриваются следующие темы:

Как выгодно «принять на работу» искусственный интеллект
Бизнес-задачи для искусственного интеллекта в непрерывном производстве
Машинное обучение в разведке и добыче
Моделирование и анализ данных в управлении непрерывным производством
Панельная дискуссия «Непрерывное производство 2050»
Как внедрять науку в бизнес и на какие грабли не стоит наступать
Дискуссия «Прикладные решения с применением искусственного интеллекта в непрерывном производстве»

Смотреть Видео

Педро Домингос. Верховный алгоритм: как машинное обучение изменит наш мир

Педро Домингос. Верховный алгоритм: как машинное обучение изменит наш мир

Описание

Машинное обучение преображает науку, технологию, бизнес и позволяет глубже узнать природу и человеческое поведение. Программирующие сами себя компьютеры – одна из самых важных современных технологий, и она же – одна из самых таинственных.

Ученый-практик Педро Домингос приоткрывает завесу и впервые доступно рассказывает о машинном обучении и о поиске универсального обучающегося алгоритма, который сможет выуживать любые знания из данных и решать любые задачи. Чтобы заглянуть в будущее и узнать, как машинное обучение изменит наш мир, не нужно специального технического образования – достаточно прочитать эту книгу.

Отзывы

Давненько я не читал такой одновременно назидательной, нагруженной и оптимистичной книги среди нехудожественной литературы! Книга оказалась очень крепким орешком, так как ее автор, известный американский разработчик с сфере искусственного интеллекта Педро Домингос совершенно не является популяризатором науки. Его цель совершенно иная - в первую очередь найти единомышленников, чтобы решить основную проблему современного машинного обучения - найти идеальный алгоритм, посредством которого любая информационная система смогла бы обучаться.

Сразу стало понятно, что Домингос не одну пятилетку работает в этом направлении, так как он замечательно владеет материалом и полностью владеет "матчастью", поражают новые и точные ссылки на разработки его коллег в той или иной области. Книга написана, с моей точки зрения, очень удачно, что позволит читателям, интересующимся информационными технологиями вообще и технологиями big data в частности, достаточно просто разобраться с текущей ситуацией в научном мире разработок по этому вопросу. Даже читатели, достаточно далекие от информатики, могут в общих чертах познакомиться с предлагаемыми идеями.

Ну, а Домингос, конечно, оптимист до мозга костей, молодец! Он понимает, что если бы научный мир смог отыскать такой "верховный алгоритм", то наш бы научный прогресс семимильными шагами смог бы продвинуться вперед, как будто как раз в ефремовскую ЭМВ - Эру Мирового Воссоединения. Он предполагает, что это супер-алгоритм должен сочетать элементы всех уже встречающихся в тех или иных областях умных алгоритмов, применяющихся в современных системах. Для этого нужно объединить приверженцев символических, генетических, эволюционных, байесовских, коннекционных алгоритмов. Что же, в этих мыслях есть неплохое зерно. Осталось разобраться с вопросом, сколько лет нам еще понадобится, чтобы "научить" наши компьютеры с помощью такой гипотетической композиции.

В любом случае, книга очень интересна, так как автор не остается на уровне рассуждений, а готов полностью окунуться в проблему и пытается "захватить в свои сети" все новых и новых оптимистов. Такие книги реально нужны для научного мира с одной стороны и могут воспитываться любопытное подрастающее поколение с другой. Автор (как и издательство МИФ) смогли преподнести мне неожиданный сюрприз. Книга действительно стоящая, заставляющая поразмышлять, порассуждать и помечтать о нашем ближайшем будущем.

Скачать книгу

Купить

Вконтакте

Telegram

Также рекомендую ознакомиться с другими материалами посвященными Искусственному интеллекту. Поставь лайк и поделись статьей с друзьями — это лучший способ помочь развитию сообщества.


Источник: m.vk.com

Комментарии: