Первый видеокодек на машинном обучении кардинально превзошёл все существующие кодеки, в том числе H.265 и VP9 |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-11-29 08:00 Примеры реконструкции фрагмента видео, сжатого разными кодеками с примерно одинаковым значением BPP (бит на пиксель). Сравнительные результаты тестирования см. под катом Карты оптического потока H.265 (слева) и кодека WaveOne (справа) на одинаковом битрейте Однако новый подход не лишен некоторых недостатков, отмечает издание MIT Technology Review. Пожалуй, главным недостатком является низкая вычислительная эффективность, то есть время, необходимое для кодирования и декодирования видео. На платформе Nvidia Tesla V100 и на видео VGA-размера новый декодер работает со средней скоростью около 10 кадров в секунду, а кодер и вовсе со скоростью около 2 кадров в секунду. Такие скорости просто невозможно применить в прямых видеотрансляциях, да и при офлайновом кодировании материалов новый кодер будет иметь весьма ограниченную сферу использования. Более того, скорости декодера недостаточно даже для просмотра видеоролика, сжатого этим кодеком, на обычном персональном компьютере. То есть для просмотра этих видеороликов даже в минимальном качестве SD в данный момент требуется целый вычислительный кластер с несколькими графическими ускорителями. А для просмотра видео в качестве HD (1080p) понадобится целая компьютерная ферма. Остаётся надеяться только на увеличение мощности графических процессоров в будущем и на совершенствование технологии: «Текущая скорость не достаточна для развёртывания в реальном времени, но должна быть существенно улучшена в будущей работе», — пишут они. Бенчмарки В тестировании принимали участие все ведущие коммерческие кодеки HEVC/H.265, AVC/H.264, VP9 и HEVC HM 16.0 в эталонной реализации. Для первых трёх использовался Ffmpeg, а для последнего — официальная реализация. Все кодеки были максимально настроены, насколько позволили знания исследователей. Например, для удаления B-фреймов использовался H.264/5 с опцией
Результаты тестирования на наборе видеороликов низкого разрешения (SD) Результаты тестирования на наборе видеороликов высокого разрешения (HD) Влияние различных компонентов кодека WaveOne на качество сжатия Не стоит удивляться такому высокому уровню сжатия и кардинальному превосходству над традиционными видеокодеками. Данная работа во многом основана на предыдущих научных статьях, где описываются различные методы сжатия статичных изображений на базе машинного зрения. Все они намного превосходят по уровню и качеству сжатия традиционные алгоритмы. Например, см. работы G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent, D. Minnen, S. Baluja, M. Covell, R. Sukthankar. Variable rate image compression with recurrent neural networks, 2015; G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen, J. Shor, M. Covell. Full resolution image compression with recurrent neural networks, 2016; J. Balle, V. Laparra, E. P. Simoncelli. End-to-end optimized image compression, 2016; N. Johnston, D. Vincent, D. Minnen, M. Covell, S. Singh, T. Chinen, S. J. Hwang, J. Shor, G. Toderici. Improved lossy image compression with priming and spatially adaptive bit rates for recurrent networks, 2017 и другие. Прогресс в области ML-сжатия статических изображений неизбежно привёл к появлению первых видеокодеков, основанных на машинном обучении. С увеличением производительности графических ускорителей реализация видеокодеков стала первым кандидатом. Статья «Выученное сжатие видео» опубликована 16 ноября 2018 года на сайте препринтов arXiv.org (arXiv:1811.06981). Авторы научной работы — Орен Риппель (Oren Rippel), Санджей Наир (Sanjay Nair), Карисса Лью (Carissa Lew), Стив Брэнсон (Steve Branson), Александер Андерсон (Alexander G. Anderson), Любомир Бурдев (Lubomir Bourdev). Лучший комментарий Stas911: Altaisky: Статья про видеокодек и ни одного видео. Нечего было показать? Stas911: Они ещё декодируют первый кадр. Проявите терпение. Источник: habr.com Комментарии: |
|