Обзор основных методов Deep Domain Adaptation (Часть 2) |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-11-28 19:39 В первой части мы ознакомились с методами доменной адаптации с помощью глубокого обучения. Поговорили об основных датасетах, а также о подходах discrepancy-based и adversarial-based non-generative. Эти методы хорошо себя показывают для некоторых задач. А в этот раз мы разберём наиболее сложные и перспективные adversarial-based методы: generative models, а также алгоритмы, показывающие наилучшие результаты на датасете VisDA (адаптации с синтетических данных под реальные фотографии). Generative Models В основе этого подхода лежит способность GAN'а генерировать данные из необходимого распределения. Благодаря этому свойству можно получить нужное количество синтетических данных и использовать их для обучения. Главная идея методов из семейства generative models заключается в генерировании с помощью домена-источника данных, максимально похожих на представителей целевого домена. Таким образом, новые синтетические данные будут иметь те же лэйблы, что и представители исходного домена, на основе которых они были получены. Затем модель для целевого домена просто обучается на этих сгенерированных данных. Представленный на ICML-2018 метод CyCADA: Cycle-Consistent Adversarial Domain Adaptation(код) является характерным представителем семейства generative models. Он комбинирует в себе несколько успешных подходов из GAN'ов и domain adaptation. Важной его частью является использование cycle-consistency loss, впервые представленной в статье о CycleGAN. Идея cycle-consistency loss заключается в том, что изображение, полученное генерированием из исходного в целевой домен с последующим обратным преобразованием, должно быть близко к начальному изображению. Кроме того, CyCADA включает в себя адаптацию на уровне пикселей и на уровне векторных представлений, а также semantic loss для сохранения структуры в сгенерированном изображении. Пусть fT и fS — сети для целевого и исходного доменов соответственно, XT и XS — целевой и исходный домены, YS — разметка на исходном домене, G(S?>T) и G(T?>S) — генераторы из исходного в целевой домен и наоборот, DT и DS — дискриминаторы принадлежности к целевому и исходному доменам соответственно. Тогда функция потерь, которая минимизируется в CyCADA, является суммой шести loss-функций (ниже представлена схема обучения с номерами loss'ов): Результаты CyCADA:
В рамках подхода Generate To Adapt: Aligning Domains using Generative Adversarial Networks (код) обучают такой генератор G, чтобы на выходе он выдавал изображения, близкие к исходному домену. Такой G позволяет преобразовывать данные из целевого домена и применять к ним обученный на размеченных данных домена-источника классификатор. Чтобы обучить такой генератор, авторы используют модифицированный дискриминатор D из статьи AC-GAN. Особенность этого D заключается в том, что он не только отвечает 1, если на вход ему пришли данные из домена-источника, и 0 в противном случае, но и в случае позитивного ответа классифицирует входные данные по классам исходного домена. Обозначим F как свёрточную сеть, которая выдаёт векторное представление изображения, C — классификатор, который работает на векторе, полученном из F. Схемы обучения и инференса алгоритма: Процедура обучения состоит из нескольких компонентов:
Результаты метода на бенчмарках:
В статье From source to target and back: symmetric bi-directional adaptive GAN (код) была представлена модель SBADA-GAN, которая довольно похожа на CyCADA и целевая функция которой так же, как и в CyCADA состоит из 6 слагаемых. В обозначениях авторов Gst и Gts — генераторы из исходного домена в целевой и наоборот, Ds и Dt — дискриминаторы, которые отличают реальные данные от сгенерированных в исходный и целевой домены соответственно, Cs и Ct — классификаторы, которые обучены на данных из исходного домена и на их трансформированных в целевой домен версиях. SBADA-GAN как и CyCADA использует идею из CycleGAN, consistency loss и псевдо-лэйблы для сгенерированных в целевой домен данных, составляя целевую функцию из соответствующих слагаемых. К особенностям SBADA-GAN можно отнести:
Схема обучения SBADA-GAN: Авторы SBADA-GAN провели больше экспериментов, чем авторы CyCADA, и получили следующие результаты:
Из семейства generative models имеет смысл рассмотреть ещё такие значимые статьи: Visual Domain Adaptation Challenge В рамках воркшопа на конференциях ECCV и ICCV проводится конкурс по доменной адаптации Visual Domain Adaptation Challenge. В нём участникам предлагается обучить на синтетических данных классификатор и адаптировать его на неразмеченные данные из ImageNet. Алгоритм, представленный в Self-ensembling for visual domain adaptation (код), победил в VisDA-2017. Этот метод построен на идее self-ensembling: есть сеть-учитель (teacher model) и сеть-ученик (student model). На каждой итерации входное изображение прогоняется через обе эти сети. Ученик обучается с помощью суммы classification loss и сonsistency loss, где classification loss — это обычная cross-entropy с известной меткой класса, а сonsistency loss — это средний квадрат разностей между предсказаниями учителя и ученика (squared difference). Веса сети-учителя вычисляются как экспоненциальное скользящее среднее от весов сети-ученика. Ниже проиллюстрирована эта процедура обучения. Важными особенностями применения этого метода для доменной адаптации являются:
Схема описанной процедуры: На основных датасетах алгоритм достиг высоких показателей. Правда, под каждую задачу авторы отдельно подбирали набор аугментаций.
Соревнование VisDA-2018 проводилось в этом году в рамках конференции ECCV-2018. В этот раз добавили 13-й класс: Unknown, куда попало всё, что не попало в 12 классов. Кроме того, проводился отдельный конкурс по детектированию объектов, относящихся к этим 12 классам. В обеих номинациях победила китайская команда JD AI Research. На классификационном конкурсе они добились результата 92,3 % (среднее значение качества по 13 категориям). Публикации с подробным описанием их метода пока нет, есть только презентация с воркшопа. Из особенностей их алгоритма можно отметить:
Схема алгоритма из презентации: Заключение По большей части мы обсуждали методы адаптации, построенные на adversarial-based подходе. Однако, в двух последних конкурсах VisDA победили алгоритмы, не связанные с ним и использующие обучение на псевдо-лэйблах и модификации более классических методов глубокого обучения. На мой взгляд, это связано с тем, что методы, основанные на GAN'ах, ещё только в начале своего развития и крайне нестабильны. Но с каждым годом мы получаем всё больше и больше новых результатов, улучшающих работу GAN'ов. К тому же, фокус интереса научного сообщества в сфере доменной адаптации в основном сосредоточен именно на adversarial-based методах, и новых статьях в основном исследуется этот подход. Поэтому велика вероятность, что алгоритмы, связанные с GAN'ами, постепенно выйдут на первые роли в вопросах адаптации. Но исследования в не adversarial-based подходах также продолжаются. Вот несколько интересных статей из этой области: Discrepancy-based методы можно отнести к разряду «исторических», однако многие идеи из них применяются в новейших методах: MMD, псевдо-лэйблы, metric-learning и т.д. К тому же, иногда в несложных задачах адаптации имеет смысл применять эти методы в силу их относительной простоты обучения и лучшей интерпретируемости результатов. В заключение хочу отметить, что методы доменной адаптации пока ищут своё применение в прикладных областях, но перспективных задач, требующих использования адаптации, постепенно становится всё больше и больше. Например, domain adaptation активно используется в обучении модулей автономных автомобилей: поскольку набирать реальные данные на улицах городов для обучения автопилотов дорого и долго, в автономных машинах используются синтетические данные (базы SYNTHIA и GTA 5 служат их примерами), в частности. для решения задачи сегментации того, что «видит» камера из автомобиля. Получение качественных моделей на основе глубокого обучения в Computer Vision во многом упирается в наличие больших размеченных датасетов для обучения. Разметка практически всегда требует большого количества времени и денег, что существенно увеличивает цикл разработки моделей и, как следствие, продуктов на их основе. Методы доменной адаптации направлены на решение этой проблемы и потенциально могут способствовать прорыву во многих прикладных задачах и в искусственном интеллекте в целом. Перенос знаний с одного домена на другой — действительно трудная и интересная задача, которая в настоящее время активно исследуется. Если вы страдаете от нехватки данных в своих задачах, и можете эмулировать данные или найти похожие домены, то рекомендую попробовать методы доменной адаптаций! Источник: habr.com Комментарии: |
|