Машинное обучение в MatLab/Octave: примеры алгоритмов, подкрепленные формулами |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-11-02 05:02 Недавно я начал изучать machine learning. Начал с прекрасного, на мой взгляд, курса от Andrew Ng. И чтобы не забыть, а так же повторить выученное решил создать репозиторий Machine Learning in Octave. В нем я собрал математические формулы для гипотез, градиентных спусков, "cost function"-ов, сигмоидов и прочих фундаментальных для машинного обучения "штук". Так же добавил туда упрощенные и доработанные примеры реализации некоторых популярных алгоритмов (нейронная сеть, линейная/логистическая регрессия и пр.) для MatLab/Octave. Надеюсь эта информация будет полезна для тех из вас, кто планирует начать изучение machine learning-а. Тема машинного обучения достаточно обширная, о чем можно судить, например, из следующей схемы, которую я взял (перевел) из великолепной статьи vas3k-а. На данный момент из всего этого разнообразия в репозитории есть примеры пяти supervised и unsupervised алгоритмов:
Для каждого алгоритма есть файл Надеюсь этот репозиторий будет для вас полезным и поможет сделать очередной шаг в сторону машинного обучения. P.S. Примеры в репозитории созданы для MatLab/Octave. Это, возможно, не такая популярная опция сейчас, как Python, но все-же для обучения, быстрого прототипирования и того же перемножения матриц без дополнительных плагинов и библиотек может неплохо подойти. Еще раз успешного вам кодинга! Источник: m.vk.com Комментарии: |
|